ValueError: too many values to unpack (expected 4) - tensorflow

I am getting "ValueError: too many values to unpack (expected 4)" with the below code. Please help me!!
I am trying to lemmatize and cut off common words and then add to library so I can identify most common words and find the relationship between words.
def build_dataset(words, vocabulary_size):
lexicon = []
for l in words:
all_words = word_tokenize(l.lower())
lexicon += list(all_words )
lexicon = [lemmatizer.lemmatize(i) for i in lexicon]
w_counts = Counter(lexicon)
word = []
for w in w_counts:
if 5000 > w_counts[w] > 50 :
word.append(w)
print(len(word))
return word
count = [['UNK', -1]]
count.extend(collections.Counter(word).most_common(vocabulary_size - 1))
dictionary = dict()
for l2, _ in count:
dictionary[l2] = len(dictionary)
data = list()
unk_count = 0
for l2 in word:
if l2 in dictionary:
index = dictionary[l2]
else:
index = 0
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size)

Related

Vectorized alternative to iterrows : Semantic Analysis

Hi I'm currently doing a semantic tweet analysis and want to improve my code running time with Numpy Vectorization.
I tried enhancing my code for a while but was not successful in doing so.
Could I just enter the formula within the loop iteration to a function and apply it via Numpy.vectorize?
ss = SentimentIntensityAnalyzer()
for index, row in tw_list["full_text"].iteritems():
score = ss.polarity_scores(row)
neg = score["neg"]
neu = score["neu"]
pos = score["pos"]
comp = score["compound"]
if neg > pos:
tw_list.loc[index, "sentiment"] = "negative"
elif pos > neg:
tw_list.loc[index, "sentiment"] = "positive"
else:
tw_list.loc[index, "sentiment"] = "neutral"
tw_list.loc[index, "neg"] = neg
tw_list.loc[index, "neu"] = neu
tw_list.loc[index, "pos"] = pos
tw_list.loc[index, "compound"] = comp
Instead of iterating over rows in dataframe, you can make use of apply function.
def get_sentiments(text):
score = ss.polarity_scores(text)
neg = score["neg"]
neu = score["neu"]
pos = score["pos"]
comp = score["compound"]
if neg > pos:
sentiment = "negative"
elif pos > neg:
sentiment = "positive"
else:
sentiment = "neutral"
return sentiment,neg,neu,pos,comp
tw_list[["sentiment","neg","neu","pos","comp"]] = tw_list["full_text"].apply(get_sentiments,result_type='broadcast')
This should give improvement in perfomance

Fuzzy matching and iteration through DataFrame

I have these two DataFrames: I want to fuzzy match the Surname strings to the corresponding Names
dico = {'Name': ['Arthur','Henri','Lisiane','Patrice'],
"Age": ["20","18","62","73"],
"Studies": ['Economics','Maths','Psychology','Medical']
}
dico2 = {'Surname': ['Henri2','Arthur1','Patrice4','Lisiane3']}
dico = pd.DataFrame.from_dict(dico)
dico2 = pd.DataFrame.from_dict(dico2)
I want to fuzzy match the Surname strings to the corresponding Names to have an output as follows
Name Surname Age Studies
0 Arthur Arthur1 20 Economics
1 Henri Henri2 18 Maths
2 Lisiane Lisiane3 62 Psychology
3 Patrice Patrice4 73 Medical
and here is my code so far:
dico['Surname'] = []
for i in dico2:
lst = [0, 0, 0]
for j in dico:
if lst[0] < fuzz.ratio(i,j):
lst[0] = fuzz.ratio(i,j)
lst[1] = i
lst[2] = j
dico['Surname'].append(i)
but i get a ValueError: Length of values (0) does not match length of index (4), which I don't get why. Thanks !
dico = {'Name': ['Arthur','Henri','Lisiane','Patrice'],
"Age": ["20","18","62","73"],
"Studies": ['Economics','Maths','Psychology','Medical']
}
dico2 = {'Surname': ['Henri2','Arthur1','Patrice4','Lisiane3']}
dico = pd.DataFrame.from_dict(dico)
dico2 = pd.DataFrame.from_dict(dico2)
temp = pd.DataFrame()
for x in range (0, len(dico.Name)):
name_str = dico.Name[x]
temp = pd.concat([temp, dico2[dico2.Surname.str.contains(name_str)].Surname])
temp.columns=['Surname']
temp = temp.reset_index(drop = True)
dico = pd.concat([dico, temp], axis=1)
Solution
map_list = []
for name in dico['Name']:
best_ratio = None
for idx, surname in enumerate(dico2['Surname']):
if best_ratio == None:
best_ratio = fuzz.ratio(name, surname)
best_idx = 0
else:
ratio = fuzz.ratio(name, surname)
if ratio > best_ratio:
best_ratio = ratio
best_idx = idx
map_list.append(dico2['Surname'][best_idx]) # obtain surname
dico['Surname'] = pd.Series(map_list) # add column
dico = dico[["Name", "Surname", "Age", "Studies"]] # reorder columns
Result
The error originates from
dico['Surname'] = []
dico['Surname'] is length 4, while [] is length 0. You can instead collect your surnames in a list and then add the surnames to the dataframe in one go after the loop.
You also need to tell the outer loop to iterate over dico2['Surname'] instead of the entire dataframe.
surnames = []
for i in dico2['Surname']:
lst = [0, 0, 0]
for j in dico:
if lst[0] < fuzz.ratio(i,j):
lst[0] = fuzz.ratio(i,j)
lst[1] = i
lst[2] = j
surnames.append(i)
dico['Surname'] = surnames
EDIT: only fixed the error in question. Also see maxbachmann's advise on not calling fuzz.ratio twice.

How to multiply two Sparse matrices by Spars method with python?

I tried to multiply the two Sparse matrices, but I had trouble deleting extra rows that were all zeros, I usednumpy.delete(my_matrix, [n], axis=0)and got this error:
index 4 is out of bounds for axis 0 with size 3
def mult_mat(mat1, mat2):
col = mat1[0][1]
row = mat2[0][0]
row_mat1, row_mat2 = np.shape(mat1)[0], np.shape(mat2)[0]
if col != row:
return "Multiplication is not possible because the number" \
" of columns in the first matrix is opposite of the" \
" number of rows in the second matrix"
my_matrix = np.array([[0] * 3] * (mat1[0][2] * mat2[0][2]))
n = 0
for r in range(1, row_mat1):
for h in range(1, row_mat2):
if mat1[r][1] == mat2[h][0]:
my_matrix[n][0], my_matrix[n][1], my_matrix[n][2] = mat1[r][0], mat2[h][1], mat1[r][2] * mat2[h][2]
n += 1
row_my_matrix = np.shape(my_matrix)[0]
for n in range(row_my_matrix):
if my_matrix[n][0] == 0 & my_matrix[n][1] == 0 & my_matrix[n][2] == 0:
my_matrix = np.delete(my_matrix, [n], axis=0)
return my_matrix

Probabilistic Record Linkage in Pandas

I have two dataframes (X & Y). I would like to link them together and to predict the probability that each potential match is correct.
X = pd.DataFrame({'A': ["One", "Two", "Three"]})
Y = pd.DataFrame({'A': ["One", "To", "Free"]})
Method A
I have not yet fully understood the theory but there is an approach presented in:
Sayers, A., Ben-Shlomo, Y., Blom, A.W. and Steele, F., 2015. Probabilistic record linkage. International journal of epidemiology, 45(3), pp.954-964.
Here is my attempt to implementat it in Pandas:
# Probability that Matches are True Matches
m = 0.95
# Probability that non-Matches are True non-Matches
u = min(len(X), len(Y)) / (len(X) * len(Y))
# Priors
M_Pr = u
U_Pr = 1 - M_Pr
O_Pr = M_Pr / U_Pr # Prior odds of a match
# Combine the dataframes
X['key'] = 1
Y['key'] = 1
Z = pd.merge(X, Y, on='key')
Z = Z.drop('key',axis=1)
X = X.drop('key',axis=1)
Y = Y.drop('key',axis=1)
# Levenshtein distance
def Levenshtein_distance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2+1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
L_D = np.vectorize(Levenshtein_distance, otypes=[float])
Z["D"] = L_D(Z['A_x'], Z['A_y'])
# Max string length
def Max_string_length(X, Y):
return max(len(X), len(Y))
M_L = np.vectorize(Max_string_length, otypes=[float])
Z["L"] = M_L(Z['A_x'], Z['A_y'])
# Agreement weight
def Agreement_weight(D, L):
return 1 - ( D / L )
A_W = np.vectorize(Agreement_weight, otypes=[float])
Z["C"] = A_W(Z['D'], Z['L'])
# Likelihood ratio
def Likelihood_ratio(C):
return (m/u) - ((m/u) - ((1-m) / (1-u))) * (1-C)
L_R = np.vectorize(Likelihood_ratio, otypes=[float])
Z["G"] = L_R(Z['C'])
# Match weight
def Match_weight(G):
return math.log(G) * math.log(2)
M_W = np.vectorize(Match_weight, otypes=[float])
Z["R"] = M_W(Z['G'])
# Posterior odds
def Posterior_odds(R):
return math.exp( R / math.log(2)) * O_Pr
P_O = np.vectorize(Posterior_odds, otypes=[float])
Z["O"] = P_O(Z['R'])
# Probability
def Probability(O):
return O / (1 + O)
Pro = np.vectorize(Probability, otypes=[float])
Z["P"] = Pro(Z['O'])
I have verified that this gives the same results as in the paper. Here is a sensitivity check on m, showing that it doesn't make a lot of difference:
Method B
These assumptions won't apply to all applications but in some cases each row of X should match a row of Y. In that case:
The probabilities should sum to 1
If there are many credible candidates to match to then that should reduce the probability of getting the right one
then:
X["I"] = X.index
# Combine the dataframes
X['key'] = 1
Y['key'] = 1
Z = pd.merge(X, Y, on='key')
Z = Z.drop('key',axis=1)
X = X.drop('key',axis=1)
Y = Y.drop('key',axis=1)
# Levenshtein distance
def Levenshtein_distance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2+1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
L_D = np.vectorize(Levenshtein_distance, otypes=[float])
Z["D"] = L_D(Z['A_x'], Z['A_y'])
# Max string length
def Max_string_length(X, Y):
return max(len(X), len(Y))
M_L = np.vectorize(Max_string_length, otypes=[float])
Z["L"] = M_L(Z['A_x'], Z['A_y'])
# Agreement weight
def Agreement_weight(D, L):
return 1 - ( D / L )
A_W = np.vectorize(Agreement_weight, otypes=[float])
Z["C"] = A_W(Z['D'], Z['L'])
# Normalised Agreement Weight
T = Z .groupby('I') .agg({'C' : sum})
D = pd.DataFrame(T)
D.columns = ['T']
J = Z.set_index('I').join(D)
J['P1'] = J['C'] / J['T']
Comparing it against Method A:
Method C
This combines method A with method B:
# Normalised Probability
U = Z .groupby('I') .agg({'P' : sum})
E = pd.DataFrame(U)
E.columns = ['U']
K = Z.set_index('I').join(E)
K['P1'] = J['P1']
K['P2'] = K['P'] / K['U']
We can see that method B (P1) doesn't take account of uncertainty whereas method C (P2) does.

Append array to itself by repeated function calls

im trying to append an array by repeatedly calling a function. When I put the append command in a loop this works fine, but not when the loop calls the function that's supposed to do the append.
import numpy as np
test_value = 555
i = 0
j = 0
test_array = np.empty([0, 3])
def test(test_value, i, j, test_array):
test_temp = []
test_temp.append(i)
test_temp.append(j)
test_temp.append(test_value)
test_temp_1 = test_temp
test_temp_2 = np.array(test_temp_1)
test_temp_2 = np.reshape(test_temp_2, (1,3))
test_array = np.append(test_array, test_temp_2, axis=0)
return test_array
for i in range(0,10):
i = i + 1
j = j + 2
test(test_value, i, j, test_array)
print ("test array", test_array)
Ideally what would happen is that test_array gets a new row added each time its looped, but so the final print of test_array stays empty.
Cheers