How to set RPATH in CMAKE? - cmake

I wish to build and install a software locally to the $HOME/.local/ path instead of a system-wide /usr/ folder. The software uses CMAKE for compilation.
After installation, the software binaries and libraries get stored in $HOME/.local/bin/ and $HOME/.local/lib/, respectively. However, when I try to run the program, it throws an error that the required library is not found (which, by the way, is present in $HOME/.local/lib/).
The program works fine if I set the $LD_LIBRARY_PATH to $HOME/.local/lib. But I don't want to do this. Hence, instead of this, I would like to know how to specify the RPATH variable (which would point to $HOME/.local/lib) while compiling the software using CMAKE.
Kindly help.

I am using the following two lines in the CMakefile
set(CMAKE_MACOSX_RPATH 1)
set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
(the first one is required only if you use MacOSX)

you may also use:
set(CMAKE_BUILD_RPATH "/my/libs/location")
specifying runtime path (RPATH) entries to add to binaries linked in the build tree (for platforms that support it). The entries will not be used for binaries in the install tree. See also the CMAKE_INSTALL_RPATH variable.

CMAKE_INSTALL_RPATH is a predefined list, so I can see scenarios where it would be better to do
list( APPEND CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_PREFIX}/lib )
If you include( GNUInstallDirs ) you could also
list( APPEND CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_LIBDIR} )
I am a CMake novice though, so if someone sees an issue with the above please let me know.

Related

How to use cmake file( GET_RUNTIME_DEPENDENCIES in an install statement?

How do you use file(GET_RUNTIME_DEPENDENCIES...) in a cmake install scripted statement? I can't find an example of this usage online, and the statement in the documentation and errors messages of using [[ ]] embedded custom scripting is not clear to me.
The impression I get is that at install time, this can be used to locate file dependencies of your cmake target and potentially bring them over with your install action, making it usable in standalone form.
For example, my application depends on QT and the expectation is that if this is configured correctly, the QT dlls needed for this application will be copied over to the bin. (I just want to be sure I don't have a misunderstanding of it's function in this context as well). It may not directly copy the files but I assume provides a list of files to copy that install will then process (all done at install time).
My naive attempt to just throw something at it to start is:
set(TARGET_NAME "myapp")
# installation settings
install(TARGETS ${TARGET_NAME}
[[
file(GET_RUNTIME_DEPENDENCIES
RESOLVED_DEPENDENCIES_VAR RES
UNRESOLVED_DEPENDENCIES_VAR UNRES
CONFLICTING_DEPENDENCIES_PREFIX CONFLICTING_DEPENDENCIES
EXECUTABLES ${TARGET_NAME}
)]]
RUNTIME DESTINATION "${INSTALL_X_BIN}" COMPONENT libraries
LIBRARY DESTINATION "${INSTALL_X_LIB}" COMPONENT libraries
)
However this of course gives me:
CMake Error at applications/CMakeLists.txt:117 (install):
install TARGETS given target " file(GET_RUNTIME_DEPENDENCIES
RESOLVED_DEPENDENCIES_VAR RES
UNRESOLVED_DEPENDENCIES_VAR UNRES
CONFLICTING_DEPENDENCIES_PREFIX CONFLICTING_DEPENDENCIES
EXECUTABLES ${TARGET_NAME}
)" which does not exist.
-- Configuring incomplete, errors occurred!
I feel silly about this like I'm missing something pretty basic.
Zeroth, an update
As of the next version of CMake (3.21), you may not want to use file(GET_RUNTIME_DEPENDENCIES) in some cases. (Which would be a good thing, as it works... poorly. It has no ability to differentiate between 32-bit and 64-bit shared libraries, for one thing, so it's irritatingly common to get wrong-arch libs returned on Linux. Then again, this development won't change that fact.)
If you're on Windows, the most common platform to require GET_RUNTIME_DEPENDENCIES logic, the next version of CMake is looking to take another stab at this (hopefully, fourth(?) time's the charm) with a new generator expression: $<TARGET_RUNTIME_DLLS:target>.
It's documented as the "List of DLLs that the target depends on at runtime. This is determined by the locations of all the SHARED and MODULE targets in the target's transitive dependencies. [...] This generator expression can be used to copy all of the DLLs that a target depends on into its output directory in a POST_BUILD custom command."
Considering I currently have custom logic in a CMakeLists.txt to do precisely that, because it's the only way to make the library's unit tests executable from the build directory, I'm hopeful this new expression makes that a bit easier.
Further update...
($<TARGET_RUNTIME_DLLS> won't fix the problems with file(GET_RUNTIME_DEPENDENCIES), but some commits just merged into CMake's upcoming 3.21 branch purport to, by teaching it how to distinguish between libraries for different architectures. Hooray!)
First, a caveat
You mentioned Qt. No matter what you do here, this method is unlikely to work for Qt all by itself, because there's no way using only the runtime dependencies of a program/library that you can discover any Qt plugins or other components that your installation may also require. Qt's dependencies are more complex than just libraries.
(My answer here demonstrates how to obtain Qt plugin information for bundling purposes, using the QCocoaIntegrationPlugin QPA on macOS as an example. All of Qt's plugins are represented by their own IMPORTED CMake targets, in recent releases, so it's typically possible to write install(CODE ...) scripting which picks up those targets using generator expressions in a similar manner to the following code.)
file(GET_RUNTIME_DEPENDENCIES)
As Tsyvarev noted in comments, GET_RUNTIME_DEPENDENCIES is intended to be used in the install stage, not the configure stage. As such, it needs to be placed in an install(CODE ...) or install(SCRIPT ...) statement, which will cause the code evaluation to be delayed until after the build is complete. (In fact, install(CODE ...) inserts the given code right into the current directory's cmake_install.cmake script. You can examine the results just by looking at that file, without even having to run the install.)
The delayed evaluation also comes with a few wrinkles. Primarily: The code doesn't understand targets. The targets no longer exist at the install stage. So, to include any target info, you have to use generator expressions to insert the correct values.
While the CMake documentation indicates that variable references and escapes aren't evaluated inside bracket arguments, generator expressions are. So, you can compose the CODE wrapped in [[ ]] to avoid escaping everything.
You still have to be careful about variable expansion / escaping. Most variables (including any you create) aren't available in the install context — only a few are, like CMAKE_INSTALL_PREFIX. You have to either expand or set any others.
There are, AFAICT, no generator expressions to access arbitrary variables. There are some for specific variables/values, but you can't say something like $<LIST:MY_LIST_VAR> or $<VALUE:MY_STRING_VAR> to combine variables and bracket arguments.
So, if you want to use variables from the configure context in the CODE, where they'll be evaluated at install time, the easiest thing to do is to "transfer" them into the install script by set()-ing a variable in the CODE.
file(INSTALL TYPE SHARED_LIBRARY)
To install shared library dependencies, you can use the same file(INSTALL) command that CMake itself uses in cmake_install.cmake if you build a shared library target. It uses the TYPE SHARED_LIBRARY option to add some extra processing. The FOLLOW_SYMLINK_CHAIN option is also especially handy. Together they'll make file(INSTALL) both resolve symbolic links in the source files, and automatically recreate them in the destination path.
Example code
So all in all, you'd want to do something like this:
set(MY_DEPENDENCY_PATHS /path/one /path/two)
# Transfer the value of ${MY_DEPENDENCY_PATHS} into the install script
install(CODE "set(MY_DEPENDENCY_PATHS \"${MY_DEPENDENCY_PATHS}\")")
install(CODE [[
file(GET_RUNTIME_DEPENDENCIES
LIBRARIES $<TARGET_FILE:mylibtarget>
EXECUTABLES $<TARGET_FILE:myprogtarget>
RESOLVED_DEPENDENCIES_VAR _r_deps
UNRESOLVED_DEPENDENCIES_VAR _u_deps
DIRECTORIES ${MY_DEPENDENCY_PATHS}
)
foreach(_file ${_r_deps})
file(INSTALL
DESTINATION "${CMAKE_INSTALL_PREFIX}/lib"
TYPE SHARED_LIBRARY
FOLLOW_SYMLINK_CHAIN
FILES "${_file}"
)
endforeach()
list(LENGTH _u_deps _u_length)
if("${_u_length}" GREATER 0)
message(WARNING "Unresolved dependencies detected!")
endif()
]])
* – (Note that using the DIRECTORIES argument on a non-Windows system will cause CMake to emit a warning, as files' dependencies are supposed to be resolvable using only the current environment.)
If the code gets too complex, there's always the option to create a separate script file copy_deps.cmake in the ${CMAKE_CURRENT_SOURCE_DIR} and use install(SCRIPT copy_deps.cmake). (A previous version of this answer suggested using file(GENERATE...) to build the script — that won't work, as the file isn't written until after processing the CMakeLists.txt.)
Building onto this answer (thanks!) I created a recursive version for collecting all library dependencies and their dependants (and so on..) for a given executable:
install(CODE [[
function(install_library_with_deps LIBRARY)
file(INSTALL
DESTINATION "${CMAKE_INSTALL_PREFIX}/lib"
TYPE SHARED_LIBRARY
FOLLOW_SYMLINK_CHAIN
FILES "${LIBRARY}"
)
file(GET_RUNTIME_DEPENDENCIES
LIBRARIES ${LIBRARY}
RESOLVED_DEPENDENCIES_VAR RESOLVED_DEPS
UNRESOLVED_DEPENDENCIES_VAR UNRESOLVED_DEPS
)
foreach(FILE ${RESOLVED_DEPS})
if(NOT IS_SYMLINK ${FILE})
install_library_with_deps(${FILE})
endif()
endforeach()
foreach(FILE ${UNRESOLVED_DEPS})
message(STATUS "Unresolved from ${LIBRARY}: ${FILE}")
endforeach()
endfunction()
file(GET_RUNTIME_DEPENDENCIES
EXECUTABLES $<TARGET_FILE:myexecutable>
RESOLVED_DEPENDENCIES_VAR RESOLVED_DEPS
UNRESOLVED_DEPENDENCIES_VAR UNRESOLVED_DEPS
)
foreach(FILE ${RESOLVED_DEPS})
install_library_with_deps(${FILE})
endforeach()
foreach(FILE ${UNRESOLVED_DEPS})
message(STATUS "Unresolved: ${FILE}")
endforeach()
]])
I also think its relevant to note that some variables (like CMAKE_INSTALL_PREFIX) can be used in the inner scope as they are, while others (like CMAKE_PREFIX_PATH) need to be re-set explicitly.
Going from here one might want to exclude specific system directories, this here likely collects too much.

Prepend to RPATH

After building with CMake on Linux (but before installing), all the linked libraries are added to the final executable's RPATH.
However, I would like to prepend $ORIGIN/../lib: to this RPATH.
So far, I've only been able to replace the RPATH, and that's not what I want: I want ld.so to first look in ../lib. This is what I currently do:
set_target_properties(foo PROPERTIES
BUILD_WITH_INSTALL_RPATH TRUE
INSTALL_RPATH "\$ORIGIN/../lib:...")
While this works, it's missing some additional third-party libraries that are not part of my build tree, and who are not located in system directories.
Doing chrpath -l foo gives me the exact same INSTALL_RPATH above. If I don't set those properties, I get the long list of DSO locations, e.g. RPATH=/bar/baz/:/quux/ etc. (the one I'd like to prepend to).
I've tried using get_property(_existing_rpath foo INSTALL_RPATH), but that gives me an empty string
I've read the hints at https://cmake.org/Wiki/CMake_RPATH_handling and noticed under "CMake Bugs" that
At least on CMake 2.6.4 RHEL5, man cmakecommands for
INSTALL_RPATH_USE_LINK_PATH pretends that this setting will append the
link path to any CMAKE_INSTALL_RPATH content one specified. However,
on this version, enabling INSTALL_RPATH_USE_LINK_PATH will replace it.
Well, not so sure about this any more: just verified this on CMake
2.8.0, and now on both versions it does list correct changes in cmake_install.cmake. This bug may have occurred due to previously not
doing per-target install(), or perhaps due to some other changes in
CMake RPATH-related variables.
By the way, I'm only interested in getting a working RPATH for the built files, as in before having run install. I haven't configured the installation properly (added install targets and so on). Do I need to look into that part for this to work?
If you can't find answers on Google, it's often the case that the answer is obvious. This seems to work just fine:
set_target_properties(foo PROPERTIES
BUILD_WITH_INSTALL_RPATH TRUE
INSTALL_RPATH_USE_LINK_PATH TRUE
INSTALL_RPATH "\$ORIGIN/../lib:${INSTALL_RPATH}")
On my system (and CMake 3.6.1), it seems INSTALL_RPATH begins with a colon, but I wouldn't count on it. Also, since I'm obviously setting the global INSTALL_RPATH here, it may be overspecified (I haven't checked).

CMAKE_SYSROOT in CMakeTestCCompiler

I have a project which builds for PPC, the Toolchain is working correctly, i can build when the sysroot is installed under /opt/poky/1.5. Now i tried to move that Installation to the Project Directory (it is not a part of the Repository there, it is just installed there so it is not reliant on that fix path, so that everyone can check out the project and build it wothout setting up the sysroot under that fixed folder).
To achieve this I set CMAKE_SYSROOT to "${PROJECT_SOURCE_DIR}/poky" where the poky will be installed upon execution of a custom build script (the project also needs to build a secure image, so it is way simpler to use a build script instead of anything else, also this is convenient for jenkins).
Since the CMAKE_SYSROOT is build from the PROJECT_SOURCE_DIR which is different for the CMakeTestCCompiler Project, the cmake call fails teloling me that the CCompiler is broken of course. So I want to know, how I am supposed to get the CMakeTestCCompiler Project to compile with the same CMAKE_SYSROOT variable, without altering the CMakeTestCCompiler Project itself (of course).
Somehow I cannot find an answer anywhere, it seems that noone ever had this issue (which frankly i cannot understand, this should be a common setup in my opinion). (Or maybe i am just too much of a noob when it comes to CMAKE, which i will gladly admit)
I am not interested in solutions like: "JUST INSTALL IT IN A FIX PATH" or such... please, I need the setup like this, I have reasons for that.
THX for reading/trying/answering/helping
Have a nice day
EDIT1:
In CMakeLists.txt (top level CMakeFile so it should be used by any build):
`SET(CMAKE_SYSROOT "${PROJECT_SOURCE_DIR}/poky/sysroots")`
In ToolchainCMake (the one given to the cmake as CMAKE_TOOLCHAIN_FILE):
`SET(CMAKE_SYSTEM_NAME Linux)`
`SET(CMAKE_SYSTEM_VERSION 1)`
`SET(CMAKE_SYSROOT "${PROJECT_SOURCE_DIR}/poky/sysroots")`
`SET(COMPILER_ROOT ${PROJECT_SOURCE_DIR}/poky/sysroots/i686-pokysdk-linux/usr/bin/powerpc-poky-linux-gnuspe)`
`SET(CMAKE_C_COMPILER ${COMPILER_ROOT}/powerpc-poky-linux-gnuspe-gcc)`
`SET(CMAKE_CXX_COMPILER ${COMPILER_ROOT}/powerpc-poky-linux-gnuspe-g++)`
`MESSAGE("CMAKE_C_COMPILER: ${CMAKE_C_COMPILER}")`
`MESSAGE("CMAKE_CXX_COMPILER: ${CMAKE_CXX_COMPILER}")`
`MESSAGE("COMPILER_ROOT: ${COMPILER_ROOT}")`
`SET(CMAKE_FIND_ROOT_PATH ${SYS_ROOT}/ppce500v2-poky-linux-gnuspe)`
`SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)`
`SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)`
`SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)`
EDIT2:
I used the
`set(CMAKE_C_COMPILER_WORKS 1 CACHE INTERNAL "")`
`set(CMAKE_CXX_COMPILER_WORKS 1 CACHE INTERNAL "")`
settings to simulate the CMakeTestCCompiler build succeeding and realized that I am facing some additional problems: It seem that the packages are looked up on the system instead of the CMAKE_SYSROOT folder. Even tried the
`SET(CMAKE_FIND_ROOT_PATH ${CMAKE_SYSROOT})`
to try to force the search in there, but without luck. In the CMakeError.log I can see, that the compiler itself was configured with the prefix option that points to /opt/poky/1.5, the path that i want to "overwrite", now I am not sure if the compiler could even deal with an alternate path.
I felt the need to add these information, they not really add to the problem at hand.
ERRORS:
I also found some errors in the above cmake:
`SET(CMAKE_SYSROOT "${PROJECT_SOURCE_DIR}/poky/sysroots")`
must be
`SET(CMAKE_SYSROOT "${PROJECT_SOURCE_DIR}/poky/sysroots/ppce500v2-poky-linux-gnuspe")`
instead and therefor the
`SET(CMAKE_FIND_ROOT_PATH ${SYS_ROOT}/ppce500v2-poky-linux-gnuspe)`
changes to
`SET(CMAKE_FIND_ROOT_PATH ${CMAKE_SYSROOT})`
EDIT: Whole answer changed.
My first suspicion was that the problem is that value of ${PROJECT_SOURCE_DIR} is not known in CMAKE_TOOLCHAIN_FILE as it is processed before CMakeLists.txt. But this isn't true.
I had similar problem (CMake 2.8.12.2), everything worked OK, when I passed cross compiler by CC environment variable with --sysroot option, i.e. CMake was invoked as follows:
CC="arm-linux-gnueabi-gcc --sysroot=/path/to/sysroot" cmake /path/to/sources
When I switched to using toolchain file, CMake started to report that C compiler doesn't work.
To workaround this problem, I use CMakeForceCompiler package. Parts toolchain file (along with comments) I think are relevant:
include(CMakeForceCompiler)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_VERSION 1)
# Force compiler - only option that actually works
cmake_force_c_compiler (${TOOLCHAIN_PATH}/bin/arm-linux-gnueabi-gcc GNU)
cmake_force_cxx_compiler(${TOOLCHAIN_PATH}/bin/arm-linux-gnueabi-g++ GNU)
# NOTE: CMAKE_SYSROOT doesn't work as expected
add_definitions("--sysroot=${TOOLCHAIN_SYSROOT}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} --sysroot=${TOOLCHAIN_SYSROOT}" CACHE INTERNAL "" FORCE)
Note, that TOOLCHAIN_PATH and TOOLCHAIN_SYSROOT are my local variables set before.

CMake install dependencies

I currently want to create an installer with cmake, but don't add all necessary DLLs by myself to CMakeLists.txt. So one solution should be to use fixup_bundle, like here suggested, so hopefully he copy all DLLs, which he can detect with a dependency walker and are on path.
But currently I have no idea how is best way to use it on a target, following code won't work, because he don't resolve TARGET_FILE_DIR like if you are using add_custom_command. Do read location via get_property won't work too, because he don't know the target anymore at time of execution. Any idea?
INSTALL(CODE "
include(BundleUtilities)
fixup_bundle($<TARGET_FILE_DIR:${PROJECT_NAME}> \"\" \"D:\\Qt\")
" COMPONENT Runtime
)
If you are using Qt4, rather than using BundleUtilities directly, you may be better off using the DeployQt4 module. It includes the following three commands which may do what you need:
install_qt4_plugin_path
install_qt4_plugin
install_qt4_executable
If you are using Qt5, it gets a bit trickier. If you are only interested in Windows and/or Mac, then Qt itself provides an appropriate tool for handling/bringing across Qt's dependencies. The relevant tools are called windeployqt and macdeployqt respectively. Sadly, at time of writing, there is no linuxdeployqt tool yet that I'm aware of.
If neither of the above options are open to you or don't do what you need, then at least the DeployQt4 module gives some clues as to how you may be able to use the INSTALL(...) command like you attempted to. The DeployQt4 module uses the following for defining its target (see right near the end of the DeployQt4.cmake file):
FIXUP_QT4_EXECUTABLE(\"\$ENV{DESTDIR}\${CMAKE_INSTALL_PREFIX}/${executable}\" \"\" \"${libs}\" \"${dirs}\" \"${plugins_dir}\" \"${request_qt_conf}\")"
${component}
)
The stuff in front of ${executable} is probably the bit you were missing. In your case, without seeing your full CMakeLists.txt file, I can only assume that you have a single target and it has the same name as your project (since you used ${PROJECT_NAME} in your attempted generator expression). You could try something like the following (not tested):
INSTALL(CODE "
include(BundleUtilities)
fixup_bundle(\"\$ENV{DESTDIR}\${CMAKE_INSTALL_PREFIX}/${MyTarget}\" \"\" \"D:\\Qt\")
" COMPONENT Runtime
)
where MyTarget is the name of the executable for your target (I think without any .exe suffix if you are on Windows). The DESTDIR part is needed when making packages, since CMake will redirect the install location by setting the DESTDIR environment variable (at least with some CMake generators). The CMAKE_INSTALL_PREFIX part is the path under which the application would be installed. There is some history behind this, but the above reflects the correct way of how to refer to the installed executable.

How to make package built with make install available for cmake?

So, I'm trying to build an application that requires gtkglextmm on CentOS. So far, I grabbed the source (from here) for gtkglext and gtkglextmm, and (finally) figured out how to compile them and install them using ./configure then make then sudo make install. That was pretty cool to get that to work.
Now, I'm trying to build Degate with cmake and it's complaining that it can't find gtkglextmm. What do I need to do to get the gtkglextmm library I built, available for cmake?
Rephrase: Built and installed library a with make,make install. Now want to build application b that depends on a with cmake. How?
Thanks!
This is a newcomer's notes made for my team as we adopt cmake. It summarizes briefly what I thought would be somewhere in a novice's example. Although with references and suitable for novices, I am very new to the material and this example may suffer accordingly.
General info for this question is at: https://cmake.org/Wiki/CMake:How_To_Find_Libraries - in particular, find_package can be used on any of the named packages listed by the help command:
cmake --help-module-list
Note: the 'Find' is omitted (e.g., FindLibXml2 -> find_package(LibXml2) )
However, for this type of library, it is more likely that it will not be in that list, in which case you want to use find_library and find_path instead. A simple example is:
find_library(SQLITE3_LIB sqlite3) # simple because I did not need to give paths
find_path(SQLITE3_PATH sqlite3.h)
target_link_libraries( your_target_name ${SQLITE3_LIB} )
include_directories( ${SQLITE3_PATH} )
You do not need to test if these have the '-NOTFOUND' return value because cmake will exit with an error if they do:
...
CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
SQLITE3_LIB
linked by target "test" in directory /home/matlab/QFDC_ROOT/api
-- Configuring incomplete, errors occurred!
Note that the all-capitalized 'SQLITE3_LIB' and 'SQLITE3_PATH' are the variable names that I chose. You choose the variable names. If you have other libraries and include directories, you can list them before and after this one and separated by spaces (I ordered them by their link order consistently for both, although I think include paths are insensitive).
Your case may not be so simple, in which case you want to use the CMake features described at find_library for providing CMake more information about where it should find that library. There are other Q&A on specifically that topic - my favorite is to produce your own FindXXX.cmake (although it is a very terse answer pointing you to an example).
In many cases, it is helpful to run make VERBOSE=1 to help you troubleshoot the process, such as cd build && cmake .. && make VERBOSE=1.
For even better diagnostics, I used DLRdave's answer to print out the INCLUDE_DIRS and I used a simple message to return the results of my variables:
message( STATUS "SQLITE3_LIB: ${SQLITE3_LIB} SQLITE3_PATH: ${SQLITE3_PATH}")
get_property(dirs DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY INCLUDE_DIRECTORIES)
foreach(dir ${dirs})
message(STATUS "dir='${dir}'")
endforeach()
EDIT NOTE: this answer was effectively re-written 2016-04-08 after discovering that the previous day's implementation erred and confused find_library() and find_path().