USB (WinUsb) isochronous bandwidth management - usb

I've been experimenting with isochronous USB transfers using WinUsb, and it turns out that WinUsb always sends data as fast as possible:
WinUsb_WriteIsochPipe packetizes the transfer buffer so that in each interval, the host can send the maximum bytes allowed per interval.
However for the kernel drivers you can apparently send shorter packets:
The MaximumPacketSize value indicates the maximum permitted size of the isochronous packet. The client driver can set the size of each isochronous packet to any value less than the MaximumPacketSize value.
I wondered how USB audio handles this. As far as I can see in the spec they just two alternative configurations for the interface - a zero bandwidth one, and a non-zero bandwidth one. There is a flag that says whether the endpoint requires full-size packets or not.
So my questions are:
a) What is the best way to handle sending less than full-speed data. Should I have a whole array of alternate configurations with different max packet sizes?
b) Should I expect to be able to send shorter-than-maximum packets? If so why doesn't WinUsb allow this?

Maybe you have to call WinUsb_WriteIsochPipe once for each packet you want to send. Make sure to use asynchronous I/O so you can queue up dozens or hundreds of requests ahead of time.

Related

Shared receive buffer for USB endpoints?

I'm developing a USB device driver for a microcontroller (Atmel/Microchip SAMD21, but I think the question is a general one). I need multiple endpoints for control & data, and the USB hardware uses per-endpoint descriptors to (among other things) locate buffers for input and output data.
Since IN data is polled at the host's discretion it makes sense that each endpoint has its own IN buffer, so that any endpoint's data (if it has any to send) is immediately available when polled.
But as far as incoming data from SETUP & OUT transactions is concerned, it occurs to me that I can save memory by configuring all endpoints to use a shared buffer. It seems wasteful for each endpoint to have its own buffer when, given the nature of USB transactions, only one such transaction can occur at a time.
Obviously this approach requires that transaction interrupts are handled sufficiently quickly that the shared buffer is freed and prepared for a new transaction in time for whatever the next transaction might be - but this is already a requirement for the control endpoint, where some SETUP transactions are immediately followed by an OUT.
So, assuming the timing is feasible, is there any other reason why such an approach wouldn't work?
Probably not.
Normally, the USB module on a microcontroller handles OUT packets by keeping track of which packet buffers it has written data to, and it waits for your firmware to say it is done processing the buffer before accepting more data from the computer and overwriting the buffer. If an endpoint has no buffers available to receive more data, but the computer sends an OUT packet to the endpoint, the USB module typically responds to the computer with a NAK packet, which tells the computer it should retry later. In this situation, your firmware can take pretty much as long as it wants to handle the OUT packets.
By having multiple endpoints configured to use the same buffer, you mess up this system. When you receive an OUT packet on any of your endpoints, the USB module would (probably) not know that multiple endpoints use the same buffer, so it would not issue NAK packets on your other OUT endpoints. If it receives another OUT packet right away, it would write it to the same buffer, overwriting the previous packet. Therefore, whenever you receive a packet, your code would have to rush as fast as it can to do something like copying the data out of that buffer, disabling other OUT endpoints, or reassigning buffers.
Even if you can actually get this to work, it means that your scheme to save a little bit of memory turns the servicing of USB events into a real-time task (i.e. a task that requires responses from your code in a few microseconds). If you want to add another real-time task to your system later, it will be very difficult, because you always have to be ready to be interrupted by your USB-handling code.
The SAMD21 has tons of memory (32 KB) so you probably don't need to worry about optimizing this part of it.
I agree with David's Response. You didn't mention the speed of the device you are creating. A low-speed would need just a few 8-byte buffers. A full-speed, a few 64-byte buffers. High-speed, maybe eight 64-byte buffers, depending on your use. A super-speed device, your still only talking a few 512-byte buffers.
I would create a ring buffer for each endpoint. This way you are not moving data around. You are simply using a pointer that points to an entry within a memory ring. A full-speed device with a control endpoint, an interrupt endpoint, and two bulk endpoints, each endpoint having sixteen 64-byte entries per ring, is still only a total of 4k RAM, 1/8th of the total RAM.
However, I am not familiar with the SAMD21, so please check the specification to be sure this will work.

WebRTC lowest possible latency

I have a simple UDP streaming protocol that takes RAW H264 video frames and sends them instantly from server side to the client side.
Using this protocol I can get near network RTT latency (no packet resending and I don't care about packet loss), so if I have 20 ms latency from server to the client I can make a video frame to be ready from encoder output to the client side (ready to be decoded) in... let's say 30 ms.
My question is:
Is WebRTC (over UDP) capable of going down to this kind of latencies?
Not taking into account encoding and decoding times, what is the
lowest latency possible I can get with WebRTC for the protocol layer?
I don't know if this kind of latencies will require my own protocol to be more deeply developed or I may go to something more generic like WebRTC for my video server development in order to instantly be supported by every web browser.
WebRTC can have the same low latency as regular SIP/RTP stacks.
WebRTC stack vendors does their best to reduce delay.
For recording and sending out there is no any delay. The stack will send the packets immediately once received from the recorder device and compressed with the selected codec. Some codec's (and some codec settings) might introduce some delay here to enable some features such as FEC.
Regarding the receiver side:
In optimal circumstances the stack should not delay the playback of the packets, so they can be display as soon as they arrive.
However in sub-optimal circumstances (with network delays or packet loss) the stack will introduce a jitter buffer. The lower is the network quality, the higher will be the jitter buffer length.
So, to achieve the lowest delay, you might have to do the followings:
choose a codec with the smallest processing time
remove FEC and disable any other settings which might cause additional delays
remove the jitter buffer (most WebRTC stacks doesn't have a setting for this so you might have to modify the code yourself, but it is an easy modification, because you just need to deactivate a part of the code)
WebRTC uses RTP as the underlying media transport which has only a small additional header at the beginning of the payload compared to plain UDP. This means it should be on par with what you achieve with plain UDP. RTP is heavily used in latency critical environments like real time audio and video (its the media transport in SIP, H.323, XMPP) and thus you can expect the latency to be sufficient for this purpose.

Do USB Control Transfers guarantee delivery?

USB 2.0 specifies 4 types of transfers (in section 5.4 Transfer Types):
Control Transfers
Isochronous Transfers
Interrupt Transfers
Bulk Transfers
Section 5.8 says that Bulk Transfers provide:
Access to the USB on a bandwidth-available basis
Retry of transfers, in the case of occasional delivery failure due to errors on the bus
Guaranteed delivery of data but no guarantee of bandwidth or latency
(Emphasis mine.)
I don't see a similar statement for Control Transfers. Do they also guarantee delivery? If not, how are users expected to handle failures?
Please provide a citation(s) to support your answer.
The USB specification provides robust error detection and recovery for control transfers. The control transfer will either be completed or the USB host will know that it failed, and I think that's what "guaranteed delivery" is supposed to mean. This is important because control transfers are used to set up the device when you plug it into a computer and they are also used for many important purposes by the various USB device classes (e.g. they are used to set the baud rate of a serial port on a USB CDC ACM device).
From section 5.5.5 of the USB 2.0 specification:
The USB provides robust error detection and recovery/retransmission for errors that occur during control transfers. Transmitters and receivers can remain synchronized with regard to where they are in a control transfer and recover with minimum effort. Retransmission of Data and Status packets can be detected by a receiver via data retry indicators in the packet. A transmitter can reliably determine that its corresponding receiver has successfully accepted a transmitted packet by information returned in a handshake to the packet. The protocol allows for distinguishing a retransmitted packet from its original packet except for a control Setup packet. Setup packets may be retransmitted due to a transmission error; however, Setup packets cannot indicate that a packet is an original or a retried transmission.
The only transfer type without guaranteed delivery is isochronous. Also, the start of frame (SOF) packets don't have guaranteed delivery.

Purpose of NYET packet in USB 2.0 HS when same purpose is accomplished by NAK

Depiction of state transitions with NYET, NAK and PING packets
What special purpose does NYET serve when the next transaction could be simply be avoided by a NAK packet from the device?
The reason for the introduction of the NYET handshake packet were bandwidth utilization efficiency considerations.
If a device responds with a NYET, the host knows that the device will very likely NAK the next OUT transaction which means that the whole frame time the data is being transmitted is wasted: The exact same data will have to be sent again.
That's why NAKing an OUT transaction wastes a lot of frame time since the OUT transaction occupies the bus without purpose and it competes with other transactions/devices as well, taking frame time from them.
Imagine the protocol without the NYET handshake: The host would have to send the same whole block of data (i.e. up to 512 bytes for bulk endpoints) every time the device NAKs just to inquiry if the device is ready.
If the host gets a NYET instead, it will start PINGing the device, asking if the device is ready to receive more data. A PING transaction is very short compared to a large data OUT transaction. Hence, if the device NAKs the PING, the host can use the rest of the frame for other transactions instead which leads to better utilization of the bus.

When do USB Hosts require a zero-length IN packet at the end of a Control Read Transfer?

I am writing code for a USB device. Suppose the USB host starts a control read transfer to read some data from the device, and the amount of data requested (wLength in the Setup Packet) is a multiple of the Endpoint 0 max packet size. Then after the host has received all the data (in the form of several IN transactions with maximum-sized data packets), will it initiate another IN transaction to see if there is more data even though there can't be more?
Here's an example sequence of events that I am wondering about:
USB enumeration process: max packet size on endpoint 0 is reported to be 64.
SETUP-DATA-ACK transaction starts a control read transfer, wLength = 128.
IN-DATA-ACK transaction delivers first 64 bytes of data to host.
IN-DATA-ACK transaction delivers last 64 bytes of data to host.
IN-DATA-ACK with zero-length DATA packet? Does this transaction ever happen?
OUT-DATA-ACK transaction completes Status Phase of the transfer; transfer is over.
I tested this on my computer (Windows Vista, if it matters) and the answer was no: the host was smart enough to know that no more data can be received from the device, even though all the packets sent by the device were full (maximum size allowed on Endpoint 0). I'm wondering if there are any hosts that are not smart enough, and will try to perform another IN transaction and expect to receive a zero-length data packet.
I think I read the relevant parts of the USB 2.0 and USB 3.0 specifications from usb.org but I did not find this issue addressed. I would appreciate it if someone can point me to the right section in either of those documents.
I know that a zero-length packet can be necessary if the device chooses to send less data than the host requested in wLength.
I know that I could make my code flexible enough to handle either case, but I'm hoping I don't have to.
Thanks to anyone who can answer this question!
Read carefully USB specification:
The Data stage of a control transfer from an endpoint to the host is complete when the endpoint does one of
the following:
Has transferred exactly the amount of data specified during the Setup stage
Transfers a packet with a payload size less than wMaxPacketSize or transfers a zero-length packet
So, in your case, when wLength == transfer size, answer is NO, you don't need ZLP.
In case wLength > transfer size, and (transfer size % ep0 size) == 0 answer is YES, you need ZLP.
In general, USB uses a less-than-max-length packet to demarcate an end-of-transfer. So in the case of a transfer which is an integer multiple of max-packet-length, a ZLP is used for demarcation.
You see this in bulk pipes a lot. For example, if you have a 4096 byte transfer, that will be broken down into an integer number of max-length packets plus one zero-length-packet. If the SW driver has a big enough receive buffer set up, higher-level SW receives the entire transfer at once, when the ZLP occurs.
Control transfers are a special case because they have the wLength field, so ZLP isn't strictly necessary.
But I'd strongly suggest SW be flexible to both, as you may see variations with different USB host silicon or low-level HCD drivers.
I would like to expand on MBR's answer. The USB specification 2.0, in section 5.5.3, says:
The Data stage of a control transfer from an endpoint to the host is
complete when the endpoint does one of the following:
Has transferred exactly the amount of data specified during the Setup stage
Transfers a packet with a payload size less than wMaxPacketSize or transfers a zero-length packet
When a Data stage is complete, the Host Controller advances to the
Status stage instead of continuing on with another data transaction.
If the Host Controller does not advance to the Status stage when the
Data stage is complete, the endpoint halts the pipe as was outlined in
Section 5.3.2. If a larger-than-expected data payload is received from
the endpoint, the IRP for the control transfer will be
aborted/retired.
I added emphasis to one of the sentences in that quote because it seems to specifically say what the device should do: it should "halt" the pipe if the host tries to continue the data phase after it was done, and it is done if all the requested data has been transmitted (i.e. the number of bytes transferred is greater than or equal to wLength). I think halting refers to sending a STALL packet.
In other words, the device does not need a zero-length packet in this situation and in fact the USB specification says it should not provide one.
You don't have to. (*)
The whole point of wLength is to tell the host the maximum number of bytes it should attempt to read (but it might read less !)
(*) I have seen devices that crash when IN/OUT requests were made at incorrect time during control transfers (when debugging our host solution). So any host doing what you are worried about, would of killed those devices and is hopefully not in the market.