I am having problems with mesh for the merged point clouds using ICP algorithm.
Firstly, I have several point clouds of different view points for the same scene. And I register them using ICP(Iterative closest point). Then I use the software such as Meshlab and CloudcompareStero to get the mesh for the registered point cloud. And I found the registered point cloud is hierarchy. It behaves as the registered point cloud have several layers in depth direction. Although the difference is very small(I set high accuracy in ICP), it affects the visual quality greatly.
Basically, I think that I have several views' point cloud and I would get a more denser and completed point cloud which contains more information than the one point cloud using ICP. And the visual quality of the registered point cloud should be better than the single views' point cloud. However, because of the layer effect, the visual quality of registered point cloud' mesh is worse than the single view point cloud's mesh.
I think the kind of question should appear in the kinect fusion or some point cloud registration process. But I don't know where to find the cue.
So I want to ask greatest as you for some advice or thoughts to reduce the hierarchy effect and improve the visual quality.
Related
Help! I'm trying to create a mesh from a point cloud (created via on-site laser-scanning), and Meshlab is giving me difficulty.
I'm able to clean up and subsample the raw point cloud in CloudCompare, and have been trying to create a mesh in Meshlab. I've assigned normals (Filters > Normals... > Compute Normals...), which seems to work.
I then used the Screen Poisson filter to create a mesh (Filters > Remeshing... > Surface Reconstruction: Screen Poisson), which produced a good result for about 2/3rds of my point cloud. The remaining 3rd of my point cloud didn't seem to be meshed at all, and the Bounding Boxes of the two layers (point cloud and mesh) are radically different, with the mesh cutting off a big chunk of the cloud.
Here's the point cloud I'm starting with:
Here's the cloud and mesh overlaid. You can clearly see the different Bounding Boxes.
And here's the mesh on its own. I have no idea why the mesh stopped where it did.
I tried to replicate the issue on a different point cloud, and produced a very similar result, albeit with a mesh that represents only about 1/5th of the point cloud this time:
Fresh attempt with a different point cloud.
Any advice on how I can avoid this?
I want to create a application which converts 2d-images/video into a 3d model. While researching on it i found out similar application like Trnio, Scann3D, Qlone,and few others(Though few of them provide poor output 3D model). I also find out about a technology launched by the microsoft research called mobileFusion which showed the same vision i was hoping for my application but these apps were non like that.
Creating a 3D modelling app is complex task, and achieving it to a high standard requires a lot of studying. To point you in the right direction, you most likely want to perform something called Structure-from-Motion(SfM) or Simultaneous Localization and Mapping (SLAM).
If you want to program this yourself OpenCV is a good place to start if you know C++ or Python. A typical pipeline involves; feature extraction and matching, camera pose estimation, triangulation and then optimised using a bundle adjustment. All pipelines for SfM and SLAM follow these general steps (with exceptions of course). All of these steps are possible is OpenCV although Googles Ceres Solver is an excellent open-source bundle adjustment. SfM generally goes onto dense matching which is where you get very dense point clouds which are good for creating meshes. A free open-source pipeline for this is OpenSfM. Another good source for tools is OpenMVG which has all of the tools you need to make a full pipeline.
SLAM is similar to SfM, however, has more of a focus on real-time application and less on absolute accuracy. Applications for this is more centred around robotics where a robot wants to know where it is relative to its environment, but it not so concerned on absolute accuracy. The top SLAM algorithms are ORB-SLAM and LSD-SLAM. Both are open-source and free for you to implement into your own software.
So really it depends what you want... SfM for high accuracy, SLAM for real-time. If you want a good 3D model I would recommend using existing algorithms as they are very good.
The best commercial software in my opinion... Agisoft Photoscan. If you can make anything half as good as this i'd be very impressed. To answer your question what resources will you require. In my opinion, python/c++ skills, the ability to google well and a spare time to read up on photogrammetry and SfM properly.
I am facing a problem on 3D reconstruction since I am a new to this filed. I have some different views' depth map(point clouds), I want to use them to reconstruct the scene to get the effect like using the kinect fusion. Is there any paper of source code to settle this problem. Or any ideas on this problem.
PS:the point cloud is stored as a file with (x,y,z), you can check here to get the data.
Thank you very much.
As you have stated that you are new to this field, I shall attempt to keep this high level. Please do comment if there is something that is not clear.
The pipeline you refer to has three key stages:
Integration
Rendering
Pose Estimation
The Integration stage takes the unprojected points from a Depth Map (Kinect image) under the current pose and "integrates" them into a spatial data structure (a Voxel Volume such as a Signed Distance Function or a hierarchical structure like an Octree), often by maintaining per Voxel running averages.
The Rendering stage takes the inverse pose for the current frame and produces an image of the visible parts of the model currently in view. For the common volumetric representations this is achieved by Raycasting. The output of this stage provides the points of the model to which the next live frame is registered (the next stage).
The Pose Estimation stage registers the previously extracted model points to those of the live frame. This is commonly achieved by the Iterative Closest Point algorithm.
With regards to pertinent literature, I would advise the following papers as a starting point.
KinectFusion: Real-Time Dense Surface Mapping and Tracking
Real-time 3D Reconstruction at Scale using Voxel Hashing
Very High Frame Rate Volumetric Integration of Depth Images on
Mobile Devices
I have a project where I have to recognize an entire room so I can calculate the distances between objects (like big ones eg. bed, table, etc.) and a person in that room. It is possible something like that using Microsoft Kinect?
Thank you!
Kinect provides you following
Depth Stream
Color Stream
Skeleton information
Its up to you how you use this data.
To answer your question - Official Micorosft Kinect SDK doesnt provides shape detection out of the box. But it does provide you skeleton data/face tracking with which you can detect distance of user from kinect.
Also with mapping color stream to depth stream you can detect how far a particular pixel is from kinect. In your implementation if you have unique characteristics of different objects like color,shape and size you can probably detect them and also detect the distance.
OpenCV is one of the library that i use for computer vision etc.
Again its up to you how you use this data.
Kinect camera provides depth and consequently 3D information (point cloud) about matte objects in the range 0.5-10 meters. With this information it is possible to segment out the floor (by fitting a plane) of the room and possibly walls and the ceiling. This step is important since these surfaces often connect separate objects making them a one big object.
The remaining parts of point cloud can be segmented by depth if they don't touch each other physically. Using color one can separate the objects even further. Note that we implicitly define an object as 3D dense and color consistent entity while other definitions are also possible.
As soon as you have your objects segmented you can measure the distances between your segments, analyse their shape, recognize artifacts or humans, etc. To the best of my knowledge however a Skeleton library can recognize humans after they moved for a few seconds. Below is a simple depth map that was broken on a few segments using depth but not color information.
I hope to find some hints where to start with a problem I am dealing with.
I am using a Kinect sensor to capture 3d point clouds. I created a 3d object detector which is already working.
Here my task:
Lets say I have a point cloud 1. I detected a object in cloud A and I know the centroid position of my object (x1,y1,z1). Now I move my sensor around a path and create new clouds (e.g. cloud 2). In that cloud 2 I see the same object but e.g. from the side, where the object detection is not working fine.
I would like to transform the detected object form cloud 1 to cloud 2, to get the centroid also in cloud 2. For me it sound like I need a matrix (Translation, Rotation) to transform point from 1 to 2.
And ideas how I could solve my problem?
Maybe ICP? Are there better solutions?
THX!
In general, this task is called registration. It relies on having a good estimation of which points in cloud 1 correspond to which clouds in point 2 (more specifically, which given a point in cloud 1, which point in cloud 2 represents the same location on the detected object). There's a good overview in the PCL library documentation
If you have such a correspondence, you're in luck and you can directly compute a rotation and translation as demonstrated here.
If not, you'll need to estimate that correspondence. ICP does that for approximately aligned point clouds, but if your point clouds are not already fairly well aligned, you may want to start by estimating "key points" (such as book corners, distinct colors, etc) in your point clouds, computing a rotation and translation as above, and then performing ICP. As D.J.Duff mentioned, ICP works better in practice on point clouds that are already approximately aligned because it estimates correspondences using one of two metrics, minimal point-to-point distance or minimal point to plane distance, according to wikipedia, the latter works better in practice, but it does involve estimating normals, which can be tricky. If the correspondences are far off, the transforms likely will be as well.
I think what you were asking about was in particular to the Kinect Sensor and the API Microsoft released for it.
If you are not planning to do reconstruction, you can look into the AlignPointClouds function in Sensor Fusion namespace. This should take care of it automatically, in methods similar to the answer given by #pnhgiol.
On the other hand, if you are looking at doing reconstruction as well as point cloud transforms, the Reconstruction class is what you are looking for. All of which can be found out about, here.