Which automation tool suits for hydraulic machines automation - automation

I want to make a machine for coconut tree maintanence, comprising of
1. Hydraulic/knumatic lift
2. Electrical cutting machine
3. Small pressing pliers
4. Remote controlling system
Process:
Note: Consider all the above mentioned units are attached on top of the lift.
Lifting the lift and start cutting the coconut leafs
Applying pressure in some part of the tree's head
I plan to do these entire process through automation. I need some ideas about automation tools/products suit for this automation.
I am good in java and similar programming concepts. I have some knowledg on plc/aurdiono by browsing.
Thanks in advance.

You can use any PLC or PC based control. Since you have Java knowledge you can try "PLC Open" controllers with ST (Structured Text) programming language.
Beckhoff TwinCAT 3 has a good implementation for that matter. TwinCAT 3 is OOP language, but is more similar to C++ than to Java. It also connects to every EtherCAT enabled device. Keep in mind that it will probably be more expensive then cheap stand-alone PLC supporting only Ladder Diagram and own hardware.
EtherCAT (remote) I/O will operate same on top of lift as near the controller (PC).
To design the device you described you will need suitable hardware and
electrical components as I/O units, contactors, valves, sensors, etc...
Safety is very important when you have heavy moving parts and hydraulic pressure. Beckhoff TwinCAT 3 has safety module but it is only programmed as functional diagram. Per my experience safety should be the first thing in mind.

Related

how can build single board computer like Raspberry Pi for run OS?

my question is : how can build single board computer like Raspberry Pi for run OS ?
user ARM micro processor and debian arm os , can use USB and etc.
like raspberry pi and other single board computer
i search but find nothing for help me !!! :(
The reason you can find nothing is probably because it is a specialist task undertaken by companies with appropriate resources in terms of expertise, equipment, tools and money.
High-end microprocessors capable of running an OS such as Linux use high-pin-density surface mount packages such as BGA or TQFP, these (especially BGA) require specialist equipment to manufacture and cannot reliably or realistically be assembled by hand. The pin count and density necessitates the use of multi-layer boards, these again require specialist manufacture.
What you would have to do if you wanted your own board, is to design your board, source the components, and then have it manufactured by a contract electronics assembly house. Short runs and one-off's will cost you may times that of just buying a COTS development or application board. It is only cost-effective if you are ultimately manufacturing a product that will sell in high volumes. It is only these volumes that make the RPi so inexpensive (and until recently Chinese manufacture).
Even if you designed and had your own board built, that in itself requires specialist knowledge and skill. The bus speeds on such processors require very specific layout to maintain signal integrity and timing and to avoid EMC problems. The cost of suitable schematic capture and board layout software might also be prohibitive, no doubt there are some reasonably capable open source tools - but you will have to find one that generates output your manufacturer can use to set-up their machinery.
Some lower-end 8 bit microcontrollers with low pin count are suitable for hand soldering or even DIP socketing, using a bread-board or prototyping board, but that is not what you are after.
[Further thoughts added 14 Sep 2012]
This is probably only worth doing if one or more of the following are true:
Your aim is to gain experience in board design, manufacture and bring-up as an academic or career development exercise and you have the necessary financial resources.
You envisage high production volumes where the economies of scale make it less expensive than a COTS board.
You have product requirements for specific features or form-factor not supported by COTS boards.
You have restricted product requirements where a custom board tailored to those and having no redundant features might, in sufficient volumes be cost-effective.
Note that COTS boards come in two types: Application modules intended for integration in a larger system or product, and development boards that tend to have a wide range of peripherals, switches, indicators and connectivity options and often a prototyping area for your own use.
I know this is an old question, but I've been looking into the same thing, possibly for different reasons, and it now comes up at the top of a google search providing more reasons not to ask or even look into it than it provides answers.
For an overview of what it takes to build a linux running board from scratch this link is incredibly useful:
http://hforsten.com/making-embedded-linux-computer.html
It details:
The bare minimum you need in terms of hardware ( ARM processor, NAND flash etc )
The complexities of getting a board designed
The process of programming the new chip on the board to include bootloaders and then pointing them to a linux kernel for the chip to boot.
Whether the OP wishes to pursue every or just some of these challenges, it is useful to know what the challenges are.
And these won't be all of them, adding displays, graphics and other hardware and interfaces is not covered, but this is a start.
Single board computers(SBC) are expected to take more load than normal hobby board and so it has slightly complicated structure in terms of PCB and components. You should be ready to work with BGA packages. Almost all of processors in SBCs are BGA (no DIP/QAFP). Here is the best blogpost that I recently came across. Its very nicely designed and fabricated board running Linux on ARM processor. Author has really done a great job at designing as well as documenting the process. I hope it helps you to understand both hardware and software side of SBCs.
A lot of answers are discouraging. But, I would say you can do it, as I have done it already with imx233. Its not easy, its not a weekend project. My project link is MyIMX233.
It took me about 4-5months
It didn't cost me much, a small fine tip soldering iron is what I used.
The hard part is learning to design PCB.
Next task would be to find a PCB manufacturer with good enough precision, and prototyping price.
Next task would be to source components.
You may not get it right, I got the PCB right by my 3rd iteration. After that I was able to repeatedly produce 3 more boards all of which worked fine.
PCB Design - I used opensource KiCAD. You need to take care in doing impedance matching between RAM and processor buses, and some other high speed buses. I managed to do it in 2 layer board with 5mil/5mil trace space.
Component Sourcing - I got imx233 LQFP once via mouser, and once via element14.
RAM - 64MB tssop.
Soldering - I can say its easy to mess up here, but key is patience. And one caution don't use frying pan and solder past to do reflow soldering. I literally fried my first 2 processors like this. Even hot air soldering by a mobile repair shop was also not good enough.
Boot loading image - I didn't take much chance here, just went with Archlinux image by olimex.
If you want to skip the trouble of circuit designing between RAM & processor, skip imx233 and go for Allwinner V3S. In 2017/2018 this would be easiest approach.
Bottom line is I am a software engineer by profession, and if I can do it, then you can do it.
Why not using an FPGA board?
Something with Zynq like the Zybo board or from Altera like the DE0-Nano SoCKit.
There you already have the ARM core, memory, etc... plus the possibility to add the logic you miss.

Simulation framework

I am working on embedded software for an industrial System. The system consists of several stepper-motors, sensors, cameras, etc. Currently, the mechanics as well as the electronics are not available - only specification.
I've implemented the simulation for some parts of mechanics/elektronics, but it takes a consiredable amount of efort. So my question:
Are there good portable (Win/Linux) Hardware simulation frameworks? Easy to install/use and affordable in prise?
My basic requirements are:
Send command to stepper -get interrupt from light-barrier
recognize object with camera ( not necessary)
mechanical parts should move according to steppers but stop
on obstacles.
objects should fall, if there is no ground underneath
fluids should increase/decrease volume in bassins according to
physical laws
My Application is in C++/Qt, so it would be the best, if such a framework had C/C++ bindings.
Thank you for any advice!
I face the same problem as I have to develop systems to interface with several types of automation devices (robots, firmware devices, etc). I still want to provide unit test for my code, but after writing 3 or 4 simulated devices, I thought it got to be a better way.
Fortunately in my case, my code was all in C# and the final solution was to use Moq to create simple mocks of those devices. I'm not familiar with mocking frameworks for C++/Qt, but a simple search rendered a couple of results, including one made by google (googlemock).

Why would I consider using an RTOS for my embedded project?

First the background, specifics of my question will follow:
At the company that I work at the platform we work on is currently the Microchip PIC32 family using the MPLAB IDE as our development environment. Previously we've also written firmware for the Microchip dsPIC and TI MSP families for this same application.
The firmware is pretty straightforward in that the code is split into three main modules: device control, data sampling, and user communication (usually a user PC). Device control is achieved via some combination of GPIO bus lines and at least one part needing SPI or I2C control. Data sampling is interrupt driven using a Timer module to maintain sample frequency and more SPI/I2C and GPIO bus lines to control the sampling hardware (ie. ADC). User communication is currently implemented via USB using the Microchip App Framework.
So now the question: given what I've described above, at what point would I consider employing an RTOS for my project? Currently I'm thinking of these possible trigger points as reasons to use an RTOS:
Code complexity? The code base architecture/organization is still small enough that I can keep all the details in my head.
Multitasking/Threading? Time-slicing the module execution via interrupts suffices for now for multitasking.
Testing? Currently we don't do much formal testing or verification past the HW smoke test (something I hope to rectify in the near future).
Communication? We currently use a custom packet format and a protocol that pretty much only does START, STOP, SEND DATA commands with data being a binary blob.
Project scope? There is a possibility in the near future that we'll be getting a project to integrate our device into a larger system with the goal of taking that system to mass production. Currently all our projects have been experimental prototypes with quick turn-around of about a month, producing one or two units at a time.
What other points do you think I should consider? In your experience what convinced (or forced) you to consider using an RTOS vs just running your code on the base runtime? Pointers to additional resources about designing/programming for an RTOS is also much appreciated.
There are many many reasons you might want to use an RTOS. They are varied & the degree to which they apply to your situation is hard to say. (Note: I tend to think this way: RTOS implies hard real time which implies preemptive kernel...)
Rate Monotonic Analysis (RMA) - if you want to use Rate Monotonic Analysis to ensure your timing deadlines will be met, you must use a pre-emptive scheduler
Meet real-time deadlines - even without using RMA, with a priority-based pre-emptive RTOS, your scheduler can help ensure deadlines are met. Paradoxically, an RTOS will typically increase interrupt latency due to critical sections in the kernel where interrupts are usually masked
Manage complexity -- definitely, an RTOS (or most OS flavors) can help with this. By allowing the project to be decomposed into independent threads or processes, and using OS services such as message queues, mutexes, semaphores, event flags, etc. to communicate & synchronize, your project (in my experience & opinion) becomes more manageable. I tend to work on larger projects, where most people understand the concept of protecting shared resources, so a lot of the rookie mistakes don't happen. But beware, once you go to a multi-threaded approach, things can become more complex until you wrap your head around the issues.
Use of 3rd-party packages - many RTOSs offer other software components, such as protocol stacks, file systems, device drivers, GUI packages, bootloaders, and other middleware that help you build an application faster by becoming almost more of an "integrator" than a DIY shop.
Testing - yes, definitely, you can think of each thread of control as a testable component with a well-defined interface, especially if a consistent approach is used (such as always blocking in a single place on a message queue). Of course, this is not a substitute for unit, integration, system, etc. testing.
Robustness / fault tolerance - an RTOS may also provide support for the processor's MMU (in your PIC case, I don't think that applies). This allows each thread (or process) to run in its own protected space; threads / processes cannot "dip into" each others' memory and stomp on it. Even device regions (MMIO) might be off limits to some (or all) threads. Strictly speaking, you don't need an RTOS to exploit a processor's MMU (or MPU), but the 2 work very well hand-in-hand.
Generally, when I can develop with an RTOS (or some type of preemptive multi-tasker), the result tends to be cleaner, more modular, more well-behaved and more maintainable. When I have the option, I use one.
Be aware that multi-threaded development has a bit of a learning curve. If you're new to RTOS/multithreaded development, you might be interested in some articles on Choosing an RTOS, The Perils of Preemption and An Introduction to Preemptive Multitasking.
Lastly, even though you didn't ask for recommendations... In addition to the many numerous commercial RTOSs, there are free offerings (FreeRTOS being one of the most popular), and the Quantum Platform is an event-driven framework based on the concept of active objects which includes a preemptive kernel. There are plenty of choices, but I've found that having the source code (even if the RTOS isn't free) is advantageous, esp. when debugging.
RTOS, first and foremost permits you to organize your parallel flows into the set of tasks with well-defined synchronization between them.
IMO, the non-RTOS design is suitable only for the single-flow architecture where all your program is one big endless loop. If you need the multi-flow - a number of tasks, running in parallel - you're better with RTOS. Without RTOS you'll be forced to implement this functionality in-house, re-inventing the wheel.
Code re-use -- if you code drivers/protocol-handlers using an RTOS API they may plug into future projects easier
Debugging -- some IDEs (such as IAR Embedded Workbench) have plugins that show nice live data about your running process such as task CPU utilization and stack utilization
Usually you want to use an RTOS if you have any real-time constraints. If you don’t have real-time constraints, a regular OS might suffice. RTOS’s/OS’s provide a run-time infrastructure like message queues and tasking. If you are just looking for code that can reduce complexity, provide low level support and help with testing, some of the following libraries might do:
The standard C/C++ libraries
Boost libraries
Libraries available through the manufacturer of the chip that can provide hardware specific support
Commercial libraries
Open source libraries
Additional to the points mentioned before, using an RTOS may also be useful if you need support for
standard storage devices (SD, Compact Flash, disk drives ...)
standard communication hardware (Ethernet, USB, Firewire, RS232, I2C, SPI, ...)
standard communication protocols (TCP-IP, ...)
Most RTOSes provide these features or are expandable to support them

LabVIEW + National Instruments hardware or ???

I'm in the processes of buying a new data acquisition system for my company to use for various projects. At first, it's primary purpose will be to monitor up to 20 thermocouples and control the temperature of a composites oven. However, I also plan on using it to monitor accelerometers, strain gauges, and to act as a signal generator.
I probably won't be the only one to use it, but I have a good bit of programming experience with Atmel microcontrollers (C). I've used LabVIEW before, but ~5 years ago. LabVIEW would be good because it is easy to pick up on for both me and my coworkers. On the flip side, it's expensive. Right now I have a NI CompactDAQ system with 2 voltage and one thermocouple cards + LabVIEW speced out and it's going to cost $5779!
I'm going to try to get the same I/O capabilities with different NI hardware for less $ + LabVIEW to see if I can get it for less $. I'd like to see if anyone has any suggestions other than LabVIEW for me.
Thanks in advance!
Welcome to test and measurement. It's pretty expensive for pre-built stuff, but you trade money for time.
You might check out the somewhat less expensive Agilent 34970A (and associated cards). It's a great workhorse for different kinds of sensing, and, if I recall correctly, it comes with some basic software.
For simple temperature control, you might consider a PID controller (Watlow or Omega used to be the brands, but it's been a few years since I've looked at them).
You also might look into the low-cost usb solutions from NI. The channel count is lower, but they're fairly inexpensive. They do still require software of some type, though.
There are also a fair number of good smaller companies (like Hytek Automation) that produce some types of measurement and control devices or sub-assemblies, but YMMV.
There's a lot of misconception about what will and will not work with LabView and what you do and do not need to build a decent system with it.
First off, as others have said, test and measurement is expensive. Regardless of what you end up doing, the system you describe IS going to cost thousands to build.
Second, you don't NEED to use NI hardware with LabView. For thermocouples your best bet is to look into multichannel or multiple single-channel thermocouple units - something that reads from a thermocouple and outputs to something like RS-232, etc. The OMEGABUS Digital Transmitters are an example, but many others exist.
In this way, you need only a breakout card with lots of RS-232 ports and you can grow your system as it needs it. You can still use labview to acquire the data via RS-232 and then display, log, process, etc, it however you like.
Third party signal generators would also work, for example. You can pick up good ones (with GPIB connection) reasonably cheaply and with a GPIB board can integrate it into LabView as well. This if you want something like a function generator, of course (duty cycled pulses, standard sine/triangle/ramp functions, etc). If you're talking about arbitrary signal generation then this remains a reasonably expensive thing to do (if $5000 is our goalpost for "expensive").
This also hinges on what you're needing the signal generation for - if you're thinking for control signals then, again, there may be cheaper and more robust opitons available. For temperature control, for example, separate hardware PID controllers are probably the best bet. This also takes care of your thermocouple problem since PID controllers will typically accept thermocouple inputs as well. In this way you only need one interface (RS-232, for example) to the external PID controller and you have total access in LabView to temperature readings as well as the ability to control setpoints and PID parameters in one unit.
Perhaps if you could elaborate on not just the system components as you've planned them at present, but the ultimaty system functionality, it may be easier to suggest alternatives - not simply alternative hardware, but alternative system design altogether.
edit :
Have a look at Omega CNi8C22-C24 and CNiS8C24-C24 units -> these are temperature and strain DIN PID units which will take inputs from your thermocouples and strain gauges, process the inputs into proper measurements, and communicate with LabView (or anything else) via RS-232.
This isn't necessarily a software answer, but if you want low cost data aquisition, you might want to look at the labjack. It's basically a microcontroller & usb interface wrapped in a nice box (like an arduino (Atmel AVR + USB-Serial converter) but closed source) with a lot of drivers and functions for various languages, including labview.
Reading a thermocouple can be tough because microvolts are significant, so you either need a high resolution A/D or an amplifier on the input. I think NI may sell a specialized digitizer for thermocouple readings, but again you'll pay.
As far as the software answer, labview will work nicely with almost any hardware you choose -- e.g. I built my own temperature controller based on an arduino (with an AD7780) wrote a little interface using serial commands and then talked with it using labview. But if you're willing to pay a premium for a guaranteed to work out of the box solution, you can't go wrong with labview and an NI part.
LabWindows CVI is NI's C IDE, with good integration with their instrument libraries and drivers. If you're willing to write C code, maybe you could get by with the base version of LabWindows CVI, versus having to buy a higher-end LabView version that has the functionality you need. LabWindows CVI and LabView are priced identically for the base versions, so
that may not be much of an advantage.
Given the range of measurement types you plan to make and the fact that you want colleagues to be able to use this, I would suggest LabVIEW is a good choice - it will support everything you want to do and make it straightforward to put a decent GUI on it. Assuming you're on Windows then the base package should be adequate and if you want to build stand-alone applications, either to deploy on other PCs or to make a particular setup as simple as possible for your colleagues, you can buy the application builder separately later.
As for the DAQ hardware, you can certainly save money - e.g. Measurement Computing have a low cost 8-channel USB thermocouple input device - but that may cost you in setup time or be less robust to repeated changes in your hardware configuration for different tests.
I've got a bit of experience with LabView stuff, and if you can afford it, it's awesome (and useful for a lot of different applications).
However, if your applications are simple you might actually be able to hack together something with one or two arduino's here, it's OSS, and has some good cheap hardware boards.
LabView really comes into its own with real time applications or RAD (because GUI dev is super easy), so if all you're doing is running a couple of thermopiles I'd find something cheaper.
A few thousand dollars is not a lot of money for process monitoring and control systems. If you do a cost/benefit analysis, you will very quickly recover your development costs if the scope of the system is right and if it does the job it is intended to do.
Another tool to consider is National Instruments measurement studio with VB .NET. This way you can still use the NI hardware if you want and can still build nice gui's quickly.
Alternatively, as others have said, it is perfectly viable to get industrial serial based instruments and talk to them with LabVIEW, VB .NET, c# or whatever you like.
If you go down the route of serial instruments, another piece of hardware that might be useful is a serial terminal (example). These allow you to connect arbitrary numbers of devices to your network. You computers can then use them as though they were physical COM ports.
Have you looked at MATLAB. They have a toolbox called Data Acquisition. compactDAQ is a supported hardware.
LabVIEW is a great visual programming environment. In terms if we want to drag,drop and visualize our system. NI Hardware also comes with the NIDAQmx Library which can be accessed through our code. Probably a feasible solution for you would be to import the libraries into another programming language and write code for all the activities which otherwise you were going to perform using LabVIEW. Though other overheads like code optimization would be the users responsibility, you are free to tweak the normal method flow, by introducing your own improvements at suitable junctures in the DAQ process.

What Skill set should a low level programmer possess?

I am an embedded SW Engineer, with less than 3 yrs of experience. I aim to "sharpen the saw" continuously. I was wondering if there was anything specific to low level programming that C/C++ coders should be proficient with.
What comes to my mind is familiarity with the hardware's architecture and instruction set. Knowing how to fiddle with bits is also important, resource management and performance have been part of my job, is there anything else?
EDIT: I work with an in-house customized RTOS, not embedded Linux.
I see a lot of high-level operating system answers here, but you specifically said low-level.
Some scattered thoughts:
Design for test. As you work through a problem only change one thing at a time per test.
You need to understand busses and interfaces, spi, i2c, usb, ethernet, etc. Number one interface, today, yesterday, and tomorrow, the uart, serial.
The steps involved in programming a flash.
Tricks to avoid making the product easily brickable.
Bootloaders in general.
Bit-banging above said interfaces on various families of parts (different chip
vendors have different ideas about io pins, pull ups, direction
controls, etc).
Board and chip bring up, you certainly never want to
boot a many tens of thousands of lines of code program on the first
power up (think led on, led off).
How to debug a product without using too much test equipment (logical analyzers and scopes), at the same time you have to learn to use a scope for debugging, you are far
more valuable if you don't HAVE TO have a tech or engineer in the lab
with you.
How would you reprogram the unit in the field? What would
you do to minimize human error when allowing the user to field
upgrade the unit? Remember field downgrades as well.
What would you do to discourage hacking (binaries, etc).
Efficient use of the flash/rom (don't wear out one bank or section, spread the wear around, or see if the flash is doing it for you).
How and when to use a watchdog timer.
State machines, very useful with bytestreams (serial and ethernet), design packet structures that stream well and are tailored to a state machine, and that have a header and checksum or other structure that insures you do not interpret partial packets or
random data as a good packet.
Specific concepts like,
Endianness (this link is to an old but good linuxjournal article)
Effective use of multithreading architectures (the Embedded site is good in general)
Debugging embedded and multithreaded systems
Understand, Learn and Follow good programming techniques (the link is very old and the point very generic and subjective, but think about it)
Other things (this IBM page on embedded linux sums up most of the other points I want to make)
One more thing -- never underestimate testing! or, planning test cases!!
Use the reference links I give as concepts,
please followup further for deeper knowledge.
I'd study the electronics of the actual chips. Learn how they work internally (such as architecture), interface with peripherals, electrical and timing characteristics, etc.
Basically, read the data sheet start to finish a few times and dig into anything you've not seen/used before.
By the way, what chips do you work with?
Similar to what Brian said, learn how to create unit tests and automated builds.
These skills are are good for all levels of software engineers to be proficient in. They will help improve the quality of your code while also making it easier to refactor and improve the code base.
If you haven't yet I think every Software Engineer should read The Pragmatic Programmer and Code Complete. I know these are not specific to low level programming, but have a large wealth of knowledge in them that applies to all sub disciplines.
Having great familiarity with pointers, the checks these languages don't do much (like buffer overflow and stuff like that), digital electronics. Operational systems internals might also help.
Get to know how stuff is represented internally, specially ready-made data structures (supposing you won't build your own one).
Above all, practice a lot. Doing it brings much more to you than just reading about it ;)
bit operations
processor architectures (caches, etc)
wcet analysis
scheduling
Edit: What I forgot to mention is model based development.
Today, the control algorithms are often implemented as some kind of automaton from which C code is generated afterwards.
Commercial available tools are for example MATLAB/Simulink, ASCET or SCADE.
Get yourself a copy of the MISRA-C book. It was originally written by members of the automotive industry, and attempts to make software written in C more robust by applying a number (quite a large number!) of rules and guidelines.
Then, buy PC-Lint (or another static analysis tool) to check your code for MISRA and other rules.
These are particularly relevant to low-level and embedded C, as between them they deal with the causes of a lot of bugs in such software, such as issues relating to pointers, memory leaks, integer promotion (there's a whole chapter on that in the MISRA book), endianness, and undefined behaviour.
Good question. Some that haven't been mentioned...
Learn your various options for achieving low-level multitasking. From basic round-robin (non-preemptive) schedulers, with timing ticks from a hardware timer, up to a preemptive RTOS. Learn why you might need an RTOS, and why you might not. If you use an RTOS, learn that beginners with a PC background probably tend to want to create too many tasks.
Getting visibility into the internals for debugging can be a challenge. There's no screen typically, so no throwing in "printf" calls wherever you want. An emulator or JTAG interface is ideal--you can set breakpoints and step through your program (as long as halting the micro doesn't make hardware go crazy, like swinging a robot arm around at full speed!). If emulator/JTAG is not available, learn how to use a spare serial port (or maybe even bit-bash a pin to make a serial port) for a debug channel, with some simple memory peek/poke commands.