Normalization of SQL tables - sql

I am creating some tables for a project and just realized that many of the tables have the same structure (Id, Name), but are used for different things. How far should I go with normalization? Should I build them all into one table or keep them apart for better understanding? How does it affect performence?
Example 1:
TableObjectType (used for types of objects in the log)
Id Name
1 User
2 MobileDevice
3 SIMcard
TableAction (used for types of actions in a log)
Id Name
1 Create
2 Edit
3 Delete
TableStatus (used for a status a device can have)
Id Name
1 Stock
2 Lost
3 Repair
4 Locked
Example 2:
TableConstants
Id Name
1 User
2 MobileDevice
3 SIMcard
4 Create
5 Edit
6 Delete
7 Stock
8 Lost
9 Repair
10 Locked
Ignore the naming, as my tables have other names, but I am using these for clarification.
The downside for using one table for all constants is that if I want to add more later on, they dont really come in "groups", but on the other hand in SQL I should never rely on a specific order when I use the data.

Just because a table has a similar structure to another doesn't mean it stores the data describing identical entities.
There are some obvious reasons not to go with example 2.
Firstly, you may want to limit the values in your ObjectTypeID column to values that are valid object types. The obvious way to do this is to create a foreign key relationship to the ObjectType table. Creating a similar check on TableConstants would be much harder (in most database engines, you can't use the foreign key restraint in this way).
Secondly, it makes the database self describing - someone who is inspecting the schema will understand that "object type" is a meaningful concept in your business domain. This is important for long-lived applications, or applications with large development teams.
Thirdly, you often get specific business logic with those references - for instance, "status" often requires some logic to say "you can't modify a record in status LOCKED". This business logic often requires storing additional data attributes - that's not really possible with a "Constants" table.
Fourthly - "constants" have to be managed. If you have a large schema, very quickly people start to re-use constants to reflect slightly different concepts. Your "create" constant might get applied to a table storing business requests as well as your log events. This becomes almost unintelligible - and if the business decides log events don't refer to "create" but "write", your business transactions all start to look wrong.
What you could do is to use an ENUM (many database engines support this) to model attributes that don't have much logic beyond storing a name. This removes risks 1, 2 and 4, but does mean your logic is encoded in the database schema - adding a new object type is a schema change, not a data insertion.

I think that generally it is better to keep tables apart (it helps documentation too). In some particular cases (your is the choice...) you could "merge" all similar tables into one (of course adding other columns, as TAB_TYPE to distinct them): this could give you some advantage in developing apps and reducing the overall number of tables (it this is a problem for you).
If they are all relatively small table (with not many records), you should have not performance problems.

Related

How to deal with lots of parameters in database?

Let's say you need to store 4 different document types somewhere (i.e, draft, sent for approval, approved, rejected).
You can create a new table for that and store it there. But it seems a bit excessive to create a table just for 4 entries.
Another approach is to create a one big table for all parameters in general and store them there. So if you ever in a need of storing 4, 15 or 2000 new parameters, you can just simply insert them into the Parameters table and store them there all together and not create a new table.
But what if the number of parameters gets bigger? Let's say, 1.000.000, 5.000.000 or even more? What would be the best approach then?
I'm not talking about the particular database but if that would help, it's either Oracle 12c or OpenEdge (Progress) database.
But it seems a bit excessive to create a table just for 4 entries.
Work with well-designed databases for a while, and it won't seem excessive.
The main problem with one big "parameters" table is that foreign keys can reference any unique row, not just the rows you want. For example, if you had one big table like this . . .
draft
sent for approval
approved
rejected
USA
Great Britain
California
...
. . . then sooner or later you'll have a document whose type is "California".
But this stems from a fundamental misunderstanding of the relational model. In the relational model, a domain consists of all possible values for a particular attribute. There are only four possible values for the "document type" attribute. For reliable data, the dbms needs to know that. And usually the best way to tell the dbms there are only four possible values is to set a foreign key reference to a column that contains only those four values.
It's an anti-pattern. Search online for "one true lookup table" or "OTLT".

SQL vs NoSQL for data that will be presented to a user after multiple filters have been added

I am about to embark on a project for work that is very outside my normal scope of duties. As a SQL DBA, my initial inclination was to approach the project using a SQL database but the more I learn about NoSQL, the more I believe that it might be the better option. I was hoping that I could use this question to describe the project at a high level to get some feedback on the pros and cons of using each option.
The project is relatively straightforward. I have a set of objects that have various attributes. Some of these attributes are common to all objects whereas some are common only to a subset of the objects. What I am tasked with building is a service where the user chooses a series of filters that are based on the attributes of an object and then is returned a list of objects that matches all^ of the filters. When the user selects a filter, he or she may be filtering on a common or subset attribute but that is abstracted on the front end.
^ There is a chance, depending on user feedback, that the list of objects may match only some of the filters and the quality of the match will be displayed to the user through a score that indicates how many of the criteria were matched.
After watching this talk by Martin Folwler (http://www.youtube.com/watch?v=qI_g07C_Q5I), it would seem that a document-style NoSQL database should suit my needs but given that I have no experience with this approach, it is also possible that I am missing something obvious.
Some additional information - The database will initially have about 5,000 objects with each object containing 10 to 50 attributes but the number of objects will definitely grow over time and the number of attributes could grow depending on user feedback. In addition, I am hoping to have the ability to make rapid changes to the product as I get user feedback so flexibility is very important.
Any feedback would be very much appreciated and I would be happy to provide more information if I have left anything critical out of my discussion. Thanks.
This problem can be solved in by using two separate pieces of technology. The first is to use a relatively well designed database schema with a modern RDBMS. By modeling the application using the usual principles of normalization, you'll get really good response out of storage for individual CRUD statements.
Searching this schema, as you've surmised, is going to be a nightmare at scale. Don't do it. Instead look into using Solr/Lucene as your full text search engine. Solr's support for dynamic fields means you can add new properties to your documents/objects on the fly and immediately have the ability to search inside your data if you have designed your Solr schema correctly.
I'm not an expert in NoSQL, so I will not be advocating it. However, I have few points that can help you address your questions regarding the relational database structure.
First thing that I see right away is, you are talking about inheritance (at least conceptually). Your objects inherit from each-other, thus you have additional attributes for derived objects. Say you are adding a new type of object, first thing you need to do (conceptually) is to find a base/super (parent) object type for it, that has subset of the attributes and you are adding on top of them (extending base object type).
Once you get used to thinking like said above, next thing is about inheritance mapping patterns for relational databases. I'll steal terms from Martin Fowler to describe it here.
You can hold inheritance chain in the database by following one of the 3 ways:
1 - Single table inheritance: Whole inheritance chain is in one table. So, all new types of objects go into the same table.
Advantages: your search query has only one table to search, and it must be faster than a join for example.
Disadvantages: table grows faster than with option 2 for example; you have to add a type column that says what type of object is the row; some rows have empty columns because they belong to other types of objects.
2 - Concrete table inheritance: Separate table for each new type of object.
Advantages: if search affects only one type, you search only one table at a time; each table grows slower than in option 1 for example.
Disadvantages: you need to use union of queries if searching several types at the same time.
3 - Class table inheritance: One table for the base type object with its attributes only, additional tables with additional attributes for each child object type. So, child tables refer to the base table with PK/FK relations.
Advantages: all types are present in one table so easy to search all together using common attributes.
Disadvantages: base table grows fast because it contains part of child tables too; you need to use join to search all types of objects with all attributes.
Which one to choose?
It's a trade-off obviously. If you expect to have many types of objects added, I would go with Concrete table inheritance that gives reasonable query and scaling options. Class table inheritance seems to be not very friendly with fast queries and scalability. Single table inheritance seems to work with small number of types better.
Your call, my friend!
May as well make this an answer. I should comment that I'm not strong in NoSQL, so I tend to lean towards SQL.
I'd do this as a three table set. You will see it referred to as entity value pair logic on the web...it's a way of handling multiple dynamic attributes for items. Lets say you have a bunch of products and each one has a few attributes.
Prd 1 - a,b,c
Prd 2 - a,d,e,f
Prd 3 - a,b,d,g
Prd 4 - a,c,d,e,f
So here are 4 products and 6 attributes...same theory will work for hundreds of products and thousands of attributes. Standard way of holding this in one table requires the product info along with 6 columns to store the data (in this setup at least one third of them are null). New attribute added means altering the table to add another column to it and coming up with a script to populate existing or just leaving it null for all existing. Not the most fun, can be a head ache.
The alternative to this is a name value pair setup. You want a 'header' table to hold the common values amoungst your products (like name, or price...things that all rpoducts always have). In our example above, you will notice that attribute 'a' is being used on each record...this does mean attribute a can be a part of the header table as well. We'll call the key column here 'header_id'.
Second table is a reference table that is simply going to store the attributes that can be assigned to each product and assign an ID to it. We'll call the table attribute with atrr_id for a key. Rather straight forwards, each attribute above will be one row.
Quick example:
attr_id, attribute_name, notes
1,b, the length of time the product takes to install
2,c, spare part required
etc...
It's just a list of all of your attributes and what that attribute means. In the future, you will be adding a row to this table to open up a new attribute for each header.
Final table is a mapping table that actually holds the info. You will have your product id, the attribute id, and then the value. Normally called the detail table:
prd1, b, 5 mins
prd1, c, needs spare jack
prd2, d, 'misc text'
prd3, b, 15 mins
See how the data is stored as product key, value label, value? Any future product added can have any combination of any attributes stored in this table. Adding new attributes is adding a new line to the attribute table and then populating the details table as needed.
I beleive there is a wiki for it too... http://en.wikipedia.org/wiki/Entity-attribute-value_model
After this, it's simply figuring out the best methodology to pivot out your data (I'd recommend Postgres as an opensource db option here)

How important are lookup tables?

A lot of the applications I write make use of lookup tables, since that was just the way I was taught (normalization and such). The problem is that the queries I make are often more complicated because of this. They often look like this
get all posts that are still open
"SELECT * FROM posts WHERE status_id = (SELECT id FROM statuses WHERE name = 'open')"
Often times, the lookup tables themselves are very short. For instance, there may only be 3 or so different statuses. In this case, would it be okay to search for a certain type by using a constant or so in the application? Something like
get all posts that are still open
"SELECT * FROM posts WHERE status_id = ".Status::OPEN
Or, what if instead of using a foreign id, I set it as an enum and queried off of that?
Thanks.
The answer depends a little if you are limited to freeware such as PostGreSQL (not fully SQL compliant), or if you are thinking about SQL (ie. SQL compliant) and large databases.
In SQL compliant, Open Architecture databases, where there are many apps using one database, and many users using different report tools (not just the apps) to access the data, standards, normalisation, and open architecture requirements are important.
Despite the people who attempt to change the definition of "normalisation", etc. to suit their ever-changing purpose, Normalisation (the science) has not changed.
if you have data values such as {Open; Closed; etc} repeated in data tables, that is data duplication, a simple Normalisation error: if you those values change, you may have to update millions of rows, which is very limited design.
Such values should be Normalised into a Reference or Lookup table, with a short CHAR(2) PK:
O Open
C Closed
U [NotKnown]
The data values {Open;Closed;etc} are no longer duplicated in the millions of rows. It also saves space.
the second point is ease of change, if Closed were changed to Expired, again, one row needs to be changed, and that is reflected in the entire database; whereas in the un-normalised files, millions of rows need to be changed.
Adding new data values, eg. (H,HalfOpen) is then simply a matter of inserting one row.
in Open Architecture terms, the Lookup table is an ordinary table. It exists in the [SQL compliant] catalogue; as long as the FOREIGN KEY relation has been defined, the report tool can find that as well.
ENUM is a Non-SQL, do not use it. In SQL the "enum" is a Lookup table.
The next point relates to the meaningfulness of the key.
If the Key is meaningless to the user, fine, use an {INT;BIGINT;GUID;etc} or whatever is suitable; do not number them incrementally; allow "gaps".
But if the Key is meaningful to the user, do not use a meaningless number, use a meaningful Relational Key.
Now some people will get in to tangents regarding the permanence of PKs. That is a separate point. Yes, of course, always use a stable value for a PK (not "immutable", because no such thing exists, and a system-generated key does not provide row uniqueness).
{M,F} are unlikely to change
if you have used {0,1,2,4,6}, well don't change it, why would you want to. Those values were supposed to be meaningless, remember, only a meaningful Key need to be changed.
if you do use meaningful keys, use short alphabetic codes, that developers can readily understand (and infer the long description from). You will appreciate this only when you code SELECT and realise you do not have to JOIN every Lookup table. Power users too, appreciate it.
Since PKs are stable, particularly in Lookup tables, you can safely code:
WHERE status_code = 'O' -- Open
You do not have to JOIN the Lookup table and obtain the data value Open, as a developer, you are supposed to know what the Lookup PKs mean.
Last, if the database were large, and supported BI or DSS or OLAP functions in addition to OLTP (as properly Normalised databases can), then the Lookup table is actually a Dimension or Vector, in Dimension-Fact analyses. If it was not there, then it would have to be added in, to satisfy the requirements of that software, before such analyses can be mounted.
If you do that to your database from the outset, you will not have to upgrade it (and the code) later.
Your Example
SQL is a low-level language, thus it is cumbersome, especially when it comes to JOINs. That is what we have, so we need to just accept the encumbrance and deal with it. Your example code is fine. But simpler forms can do the same thing.
A report tool would generate:
SELECT p.*,
s.name
FROM posts p,
status s
WHERE p.status_id = s.status_id
AND p.status_id = 'O'
Another Exaple
For banking systems, where we use short codes which are meaningful (since they are meaningful, we do not change them with the seasons, we just add to them), given a Lookup table such as (carefully chosen, similar to ISO Country Codes):
Eq Equity
EqCS Equity/Common Share
OTC OverTheCounter
OF OTC/Future
Code such as this is common:
WHERE InstrumentTypeCode LIKE "Eq%"
And the users of the GUI would choose the value from a drop-down that displays
{Equity/Common Share;Over The Counter},
not {Eq;OTC;OF}, not {M;F;U}.
Without a lookup table, you can't do that, either in the apps, or in the report tool.
For look-up tables I use a sensible primary key -- usually just a CHAR(1) that makes sense in the domain with an additional Title (VARCHAR) field. This can maintain relationship enforcement while "keeping the SQL simple". The key to remember here is the look-up table does not "contain data". It contains identities. Some other identities might be time-zone names or assigned IOC country codes.
For instance gender:
ID Label
M Male
F Female
N Neutral
select * from people where gender = 'M'
Alternatively, an ORM could be used and manual SQL generation might never have to be done -- in this case the standard "int" surrogate key approach is fine because something else deals with it :-)
Happy coding.
Create a function for each lookup.
There is no easy way. You want performance and query simplicity. Ensure the following is maintained. You could create a SP_TestAppEnums to compare existing lookup values against the function and look for out of sync/zero returned.
CREATE FUNCTION [Enum_Post](#postname varchar(10))
RETURNS int
AS
BEGIN
DECLARE #postId int
SET #postId =
CASE #postname
WHEN 'Open' THEN 1
WHEN 'Closed' THEN 2
END
RETURN #postId
END
GO
/* Calling the function */
SELECT dbo.Enum_Post('Open')
SELECT dbo.Enum_Post('Closed')
Question is: do you need to include the lookup tables (domain tables 'round my neck of the woods) in your queries? Presumably, these sorts of tables are usually
pretty static in nature — the domain might get extended, but it probably won't get shortened.
their primary key values are pretty unlikely to change as well (e.g., the status_id for a status of 'open' is unlikely to suddenly get changed to something other than what it was created as).
If the above assumptions are correct, there's no real need to add all those extra tables to your joins just so your where clause can use a friend name instead of an id value. Just filter on status_id directly where you need to. I'd suspect the non-key attribute in the where clause ('name' in your example above) is more likely to get changes than the key attribute ('name' in your example above): you're more protected by referencing the desire key value(s) of the domain table in your join.
Domain tables serve
to limit the domain of the variable via a foreign key relationship,
to allow the domain to be expanded by adding data to the domain table,
to populate UI controls and the like with user-friendly information,
Naturally, you'd need to suck domain tables into your queries where you you actually required the non-key attributes from the domain table (e.g., descriptive name of the value).
YMMV: a lot depends on context and the nature of the problem space.
The answer is "whatever makes sense".
lookup tables involve joins or subqueries which are not always efficient. I make use of enums a lot to do this job. its efficient and fast
Where possible (and It is not always . . .), I use this rule of thumb: If I need to hard-code a value into my application (vs. let it remain a record in the database), and also store that vlue in my database, then something is amiss with my design. It's not ALWAYS true, but basically, whatever the value in question is, it either represents a piece of DATA, or a peice of PROGRAM LOGIC. It is a rare case that it is both.
NOT that you won't find yourself discovering which one it is halfway into the project. But as the others said above, there can be trade-offs either way. Just as we don't always acheive "perfect" normalization in a database design (for reason of performance, or simply because you CAN take thngs too far in pursuit of acedemic perfection . . .), we may make some concious choices about where we locate our "look-up" values.
Personally, though, I try to stand on my rule above. It is either DATA, or PROGRAM LOGIC, and rarely both. If it ends up as (or IN) a record in the databse, I try to keep it out of the Application code (except, of course, to retrieve it from the database . . .). If it is hardcoded in my application, I try to keep it out of my database.
In cases where I can't observe this rule, I DOCUMENT THE CODE with my reasoning, so three years later, some poor soul will be able to ficure out how it broke, if that happens.
The commenters have convinced me of the error of my ways. This answer and the discussion that went along with it, however, remain here for reference.
I think a constant is appropriate here, and a database table is not. As you design your application, you expect that table of statuses to never, ever change, since your application has hard-coded into it what those statuses mean, anyway. The point of a database is that the data within it will change. There are cases where the lines are fuzzy (e.g. "this data might change every few months or so…"), but this is not one of the fuzzy cases.
Statuses are a part of your application's logic; use constants to define them within the application. It's not only more strictly organized that way, but it will also allow your database interactions to be significantly speedier.

One mysql table with many fields or many (hundreds of) tables with fewer fields?

I am designing a system for a client, where he is able to create data forms for various products he sales him self.
The number of fields he will be using will not be more than 600-700 (worst case scenario). As it looks like he will probably be in the range of 400 - 500 (max).
I had 2 methods in mind for creating the database (using meta data):
a) Create a table for each product, which will hold only fields necessary for this product, which will result to hundreds of tables but with only the neccessary fields for each product
or
b) use one single table with all availabe form fields (any range from current 300 to max 700), resulting in one table that will have MANY fields, of which only about 10% will be used for each product entry (a product should usualy not use more than 50-80 fields)
Which solution is best? keeping in mind that table maintenance (creation, updates and changes) to the table(s) will be done using meta data, so I will not need to do changes to the table(s) manually.
Thank you!
/**** UPDATE *****/
Just an update, even after this long time (and allot of additional experience gathered) I needed to mention that not normalizing your database is a terrible idea. What is more, a not normalized database almost always (just always from my experience) indicates a flawed application design as well.
i would have 3 tables:
product
id
name
whatever else you need
field
id
field name
anything else you might need
product_field
id
product_id
field_id
field value
Your key deciding factor is whether normalization is required. Even though you are only adding data using an application, you'll still need to cater for anomalies, e.g. what happens if someone's phone number changes, and they insert multiple rows over the lifetime of the application? Which row contains the correct phone number?
As an example, you may find that you'll have repeating groups in your data, like one person with several phone numbers; rather than have three columns called "Phone1", "Phone2", "Phone3", you'd break that data into its own table.
There are other issues in normalisation, such as transitive or non-key dependencies. These concepts will hopefully lead you to a database table design without modification anomalies, as you should hope for!
Pulegiums solution is a good way to go.
You do not want to go with the one-table-for-each-product solution, because the structure of your database should not have to change when you insert or delete a product. Only the rows of one or many tables should be inserted or deleted, not the tables themselves.
While it's possible that it may be necessary, having that many fields for something as simple as a product list sounds to me like you probably have a flawed design.
You need to analyze your potential table structures to ensure that each field contains no more than one piece of information (e.g., "2 hammers, 500 nails" in a single field is bad) and that each piece of information has no more than one field where it belongs (e.g., having phone1, phone2, phone3 fields is bad). Either of these situations indicates that you should move that information out into a separate, related table with a foreign key connecting it back to the original table. As pulegium has demonstrated, this technique can quickly break things down to three tables with only about a dozen fields total.

What is the preferred way to store custom fields in a SQL database?

My friend is building a product to be used by different independent medical units.
The database stores a vast collection of measurements taken at different times, like the temperature, blood pressure, etc...
Let us assume these are held in a table called exams with columns temperature, pressure, etc... (as well as id, patient_id and timestamp). Most of the measurements are stored as floats, but some are of other types (strings, integers...)
While many of these measurements are handled by their product, it needs to allow the different medical units to record and process other custom measurements. A very nifty UI allows the administrator to edit these customs fields, specify their name, type, possible range of values, etc...
He is unsure as to how to store these custom fields.
He is leaning towards a separate table (say a table custom_exam_data with fields like exam_id, custom_field_id, float_value, string_value, ...)
I worry that this will make searching both more difficult to achieve and less efficient.
I am leaning towards modifying the exam table directly (while avoiding conflicts on column names with some scheme like prefixing all custom fields with an underscore or naming them custom_1, ...)
He worries about modifying the database dynamically and having different schemas for each medical unit.
Hopefully some people which more experience can weigh in on this issue.
Notes:
he is using Ruby on Rails but I think this question is pretty much framework agnostic, except from the fact that he is only looking for solutions in SQL databases only.
I simplified the problem a bit since the custom fields need to be available for more than one table, but I believe this doesn`t really impact the direction to take.
(added) A very generic reporting module will need to search, sort, generate stats, etc.. of this data, so it is required that this data be stored in the columns of the appropriate type
(added) User inputs will be filtered, for the standard fields as well as for the custom fields. For example, numbers will be checked within a given range (can't have a temperature of -12 or +444), etc... Thus, conversion to the appropriate SQL type is not a problem.
I've had to deal with this situation many times over the years, and I agree with your initial idea of modifying the DB tables directly, and using dynamic SQL to generate statements.
Creating string UserAttribute or Key/Value columns sounds appealing at first, but it leads to the inner-platform effect where you end up having to re-implement foreign keys, data types, constraints, transactions, validation, sorting, grouping, calculations, et al. inside your RDBMS. You may as well just use flat files and not SQL at all.
SQL Server provides INFORMATION_SCHEMA tables that let you create, query, and modify table schemas at runtime. This has full type checking, constraints, transactions, calculations, and everything you need already built-in, don't reinvent it.
It's strange that so many people come up with ad-hoc solutions for this when there's a well-documented pattern for it:
Entity-Attribute-Value (EAV) Model
Two alternatives are XML and Nested Sets. XML is easier to manage but generally slow. Nested Sets usually require some type of proprietary database extension to do without making a mess, like CLR types in SQL Server 2005+. They violate first-normal form, but are nevertheless the fastest-performing solution.
Microsoft Dynamics CRM achieves this by altering the database design each time a change is made. Nasty, I think.
I would say a better option would be to consider an attribute table. Even though these are often frowned upon, it gives you the flexibility you need, and you can always create views using dynamic SQL to pivot the data out again. Just make sure you always use LEFT JOINs and FKs when creating these views, so that the Query Optimizer can do its job better.
I have seen a use of your friend's idea in a commercial accounting package. The table was split into two, first contained fields solely defined by the system, second contained fields like USER_STRING1, USER_STRING2, USER_FLOAT1 etc. The tables were linked by identity value (when a record is inserted into the main table, a record with same identity is inserted into the second one). Each table that needed user fields was split like that.
Well, whenever I need to store some unknown type in a database field, I usually store it as String, serializing it as needed, and also store the type of the data.
This way, you can have any kind of data, working with any type of database.
I would be inclined to store the measurement in the database as a string (varchar) with another column identifying the measurement type. My reasoning is that it will presumably, come from the UI as a string and casting to any other datatype may introduce a corruption before the user input get's stored.
The downside is that when you go to filter result-sets by some measurement metric you will still have to perform a casting but at least the storage and persistence mechanism is not introducing corruption.
I can't tell you the best way but I can tell you how Drupal achieves a sort of schemaless structure while still using the standard RDBMSs available today.
The general idea is that there's a schema table with a list of fields. Each row really only has two columns, the 'table':String column and the 'column':String column. For each of these columns it actually defines a whole table with just an id and the actual data for that column.
The trick really is that when you are working with the data it's never more than one join away from the bundle table that lists all the possible columns so you end up not losing as much speed as you might otherwise think. This will also allow you to expand much farther than just a few medical companies unlike the custom_ prefix you were proposing.
MySQL is very fast at returning row data for short rows with few columns. In this way this scheme ends up fairly quick while allowing you lots of flexibility.
As to search, my suggestion would be to index the page content instead of the database content. Use Solr to parse through rendered pages and hold links to the actual page instead of trying to search through the database using clever SQL.
Define two new tables: custom_exam_schema and custom_exam_data.
custom_exam_data has an exam_id column, plus an additional column for every custom attribute.
custom_exam_schema would have a row to describe how to interpret each of the columns of the custom_exam_data table. It would have columns like name, type, minValue, maxValue, etc.
So, for example, to create a custom field to track the number of fingers a person has, you would add ('fingerCount', 'number', 0, 10) to custom_exam_schema and then add a column named fingerCount to the exam table.
Someone might say it's bad to change the database schema at run time, but I'd argue that configuring these custom fields is part of set up and won't happen too often. Still, this method lets you handle changes at any time and doesn't risk messing around with your core table schemas.
lets say that your friend's database has to store data values from multiple sources such as demogrphic values, diagnosis, interventions, physionomic values, physiologic exam values, hospitalisation values etc.
He might have as well to define choices, lets say his database is missing the race and the unit staff need the race of the patient (different races are more unlikely to get some diseases), they might want to use a drop down with several choices.
I would propose to use an other table that would have these choices or would you just use a "Custom_field_choices" table, which at some point is exactly the same but with a different name.
Considering that the database :
- needs to be flexible
- that data from multiple tables can be added and be customized
- that you might want to keep the integrity of the main structure of your database for distribution and uniformity purpose
- that data MUST have a limit and alarms and warnings
- that data must have units ( 10 kg or 10 pounds) ?
- that data can have a selection of choices
- that data can be with different rights (from simple user to admin)
- that these data might be needed to generate reports without modifying the code (automation)
- that these data might be needed to make cross reference analysis within the system without modifying the code
the custom table would be my solution, modifying each table would end up being too risky.
I would store those custom fields in a table where each record ( dataType, dataValue, dataUnit ) would use in one row. So there would be a relation oneToMany from one sample to the data. You can also create a table to record all the kind of cutsom types you would use. For example:
create table DataType
(
id int primary key,
name varchar(100) not null unique
description text,
uri varchar(255) //<-- can be used for an ONTOLOGY
)
create table DataRecord
(
id int primary key,
sample_id int not null,//<-- reference to the sample
dataType_id int not null, //<-- references DataType
value varchar(100),//<-- the value as string
unit varchar(50)//<-- g, mg/ml, etc... but it could also be a link to a table describing the units just like DataType
)