How to map the column wise data in flowfile in NiFi? - sql

i have csv file which having following structure.,
Alfreds,Centro,Ernst,Island,Bacchus
Germany,Mexico,Austria,UK,Canada
01,02,03,04,05
Now i have to move that data into database like below.
Name,City,ID
Alfreds,Germay,01
Centro,Mexico,02
Ernst,Austria,03
Island,UK,04
Bacchus,Canda,05
i try to map those colums but i can't able to extract the data in column wise.
Here my input data in column wise but i need to insert those in row wise in SQLServer
Can anyone suggest way to transfer column wise data into row wise in sql server?.
Thanks

There is no existing Apache NiFi processor to perform column transposition. One of the problems is that this is difficult to do in a streaming manner, as most NiFi components are designed, because in a naïve implementation you need to hold the entire contents of the flowfile in active memory at the same time.
I would recommend using an ExecuteScript processor to do this (here's a 6 line Python example). Be careful doing this because you can easily end up overflowing your heap if it is not set properly/you read unexpectedly large files into memory.
You could write a custom processor which performs a streaming transpose operation by iterating over each of n rows and reading up to your delimiter, storing a byte counter per row, combining the n elements as a single output row, and repeating the process starting from the respective byte counter of each row. (Given m columns, this is O(m * n)).
Another solution would be splitting the CSV input into individual rows using the SplitText processor, using an ExecuteScript or custom processor to transpose a single row into a single column, and then using a custom merge operation (either extend the existing MergeContent processor or write a script to do this) which laterally concatenates the incoming columns into a reconstructed matrix. (O(n) + O(n) + O(m) => O(2n + m) but the individual transposition operations can be performed in parallel so with x threads it's O(n + n/x + m)).
Any of these approaches will require some level of custom development. If you are really hesitant to pursue that, you could try using ExecuteStreamCommand and one of the many bash solutions to do the transposition on the command-line.

#Andy,
It could be possible in NiFi also without using ExecuteScript.
I have extract the 3 input rows as input.1,input.2,input.3 in ExtractText. And then count number of columns in "input.1" using AnydelinateValues in expression language and store that in "TotalCount" Attribute.
Initially made "Count=1".
Using Loop Concept to get the first column by using "Count" and then increment "Count" Check "Count" in RouteOnAttribute
"le(totalcount)"
Now form insert Query with "Count" Attribute.
It worked well for me.It could be useful for someone.

Related

How to overcome the 2GB limit for a single column value in Spark

I am ingesting json files where the entire data payload is on a single row, single column.
This column is an array of complex objects that I want to explode so that each object represents a row.
I'm using a Databricks notebook and spark.read.json() to load the file contents to a dataframe.
This results in a dataframe with a single row, and the data payload in a single column.(let's call it obj_array)
The problem I'm having is that the obj_array column is greater than 2GB so Spark cannot handle the explode() function.
Are there any alternatives to splitting the json file into more manageable chunks?
Thanks.
Code example...
#set path to file
jsonFilePath='/mnt/datalake/jsonfiles/filename.json
#read file to dataframe
#entitySchema is a schema struct previously extracted from a sample file
rawdf=spark.read.option("multiline","true").schema(entitySchema).format("json").load(jsonFilePath)
#rawdf contains a single row of file_name,timestamp_created, and obj_array #obj_array is an array field containing the entire data payload (>2GB)
explodeddf=rawdf.selectExpr("file_name","timestamp_created","explode(obj_array) as data")
#this column explosion fails due to obj_array exceeding 2GB
When you hit limits like this you need to re-frame the problem. Spark is choking on 2Gigs in a column and that a pretty reasonable choke point. Why not write your own custom data reader.(Presenstation) That emits records in the way that you deem reasonable? (Likely the best solution to leave the files as is.)
You could probably read all the records in with a simple text read and then "paint" in columns after. You could use SQL tricks to try to expand and fill rows with windows/lag.
You could do file level cleaning/formatting to make the data more manageable for the out of the box tools to work with.

Output Dataframe to CSV File using Repartition and Coalesce

Currently, I am working on a single node Hadoop and I wrote a job to output a sorted dataframe with only one partition to one single csv file. And I discovered several outcomes when using repartition differently.
At first, I used orderBy to sort the data and then used repartition to output a CSV file, but the output was sorted in chunks instead of in an overall manner.
Then, I tried to discard repartition function, but the output was only a part of the records. I realized without using repartition spark will output 200 CSV files instead of 1, even though I am working on a one partition dataframe.
Thus, what I did next were placing repartition(1), repartition(1, "column of partition"), repartition(20) function before orderBy. Yet output remained the same with 200 CSV files.
So I used the coalesce(1) function before orderBy, and the problem was fixed.
I do not understand why working on a single partitioned dataframe has to use repartition and coalesce, and how the aforesaid processes affect the output. Grateful if someone can elaborate a little.
Spark has relevant parameters here:
spark.sql.shuffle.partitions and spark.default.parallelism.
When you perform operations like sort in your case, it triggers something called a shuffle operation
https://spark.apache.org/docs/latest/rdd-programming-guide.html#shuffle-operations
That will split your dataframe to spark.sql.shuffle.partitions partitions.
I also struggled with the same problem as you do and did not find any elegant solution.
Spark generally doesn’t have a great concept of ordered data, because all your data is split accross multiple partitions. And every time you call an operation that requires a shuffle your ordering will be changed.
For this reason, you’re better off only sorting your data in spark for the operations that really need it.
Forcing your data into a single file will break when the dataset gets larger
As Miroslav points out your data gets shuffled between partitions every time you trigger what’s called a shuffle stage (this is things like grouping or join or window operations)
You can set the number of shuffle partitions in the spark Config - the default is 200
Calling repartition before a group by operation is kind of pointless because spark needs to reparation your data again to execute the groupby
Coalesce operations sometimes get pushed into the shuffle stage by spark. So maybe that’s why it worked. Either that or because you called it after the groupby operation
A good way to understand what’s going on with your query is to start using the spark UI - it’s normally available at http://localhost:4040
More info here https://spark.apache.org/docs/3.0.0-preview/web-ui.html

Find out the amount of space each field takes in Google Big Query

I want to optimize the space of my Big Query and google storage tables. Is there a way to find out easily the cumulative space that each field in a table gets? This is not straightforward in my case, since I have a complicated hierarchy with many repeated records.
You can do this in Web UI by simply typing (and not running) below query changing to field of your interest
SELECT <column_name>
FROM YourTable
and looking into Validation Message that consists of respective size
Important - you do not need to run it – just check validation message for bytesProcessed and this will be a size of respective column
Validation is free and invokes so called dry-run
If you need to do such “columns profiling” for many tables or for table with many columns - you can code this with your preferred language using Tables.get API to get table schema ; then loop thru all fields and build respective SELECT statement and finally Dry Run it (within the loop for each column) and get totalBytesProcessed which as you already know is the size of respective column
I don't think this is exposed in any of the meta data.
However, you may be able to easily get good approximations based on your needs. The number of rows is provided, so for some of the data types, you can directly calculate the size:
https://cloud.google.com/bigquery/pricing
For types such as string, you could get the average length by querying e.g. the first 1000 fields, and use this for your storage calculations.

looping in a Kettle transformation

I want to repetitively execute an SQL query looking like this:
SELECT '${date.i}' AS d,
COUNT(DISTINCT xid) AS n
FROM table
WHERE date
BETWEEN DATE_SUB('${date.i}', INTERVAL 6 DAY)
AND '${date.i}'
;
It is basically a grouping by time spans, just that those are intersecting, which prevents usage of GROUP BY.
That is why I want to execute the query repetitively for every day in a certain time span. But I am not sure how I should implement the loop. What solution would you suggest?
The Kettle variable date.i is initialized from a global variable. The transformation is just one of several in the same transformation bundle. The "stop trafo" would be implemented maybe implicitely by just not reentering the loop.
Here's the flow chart:
Flow of the transformation:
In step "INPUT" I create a result set with three identical fields keeping the dates from ${date.from} until ${date.until} (Kettle variables). (for details on this technique check out my article on it - Generating virtual tables for JOIN operations in MySQL).
In step "SELECT" I set the data source to be used ("INPUT") and that I want "SELECT" to be executed for every row in the served result set. Because Kettle maps parameters 1 on 1 by a faceless question-mark I have to serve three times the same paramter - for each usage.
The "text file output" finally outputs the result in a generical fashion. Just a filename has to be set.
Content of the resulting text output for 2013-01-01 until 2013-01-05:
d;n
2013/01/01 00:00:00.000;3038
2013/01/02 00:00:00.000;2405
2013/01/03 00:00:00.000;2055
2013/01/04 00:00:00.000;2796
2013/01/05 00:00:00.000;2687
I am not sure if this is the slickest solution but it does the trick.
In Kettle you want to avoid loops and they can cause real trouble in transforms. Instead you should do this by adding a step that will put a row in the stream for each date you want (with the value stored in a field) and then using that field value in the query.
ETA: The stream is the thing that moves rows (records) between steps. It may help to think of it as consisting of a table at each hop that temporarily holds rows between steps.
You want to avoid loops because a Kettle transform is only sequential at the row level: rows may process in parallel and out of order and the only guarantee is that the row will pass through the steps in order. Because of this a loop in a transform does not function as you would intuitively expect.
FYI, it also sounds like you might need to go through some of the Kettle tutorials if you are still unclear about what the stream is.

Suggestions/Opinions for implementing a fast and efficient way to search a list of items in a very large dataset

Please comment and critique the approach.
Scenario: I have a large dataset(200 million entries) in a flat file. Data is of the form - a 10 digit phone number followed by 5-6 binary fields.
Every week I will be getting a Delta files which will only contain changes to the data.
Problem : Given a list of items i need to figure out whether each item(which will be the 10 digit number) is present in the dataset.
The approach I have planned :
Will parse the dataset and put it a DB(To be done at the start of the
week) like MySQL or Postgres. The reason i want to have RDBMS in the
first step is I want to have full time series data.
Then generate some kind of Key Value store out of this database with
the latest valid data which supports operation to find out whether
each item is present in the dataset or not(Thinking some kind of a
NOSQL db, like Redis here optimised for search. Should have
persistence and be distributed). This datastructure will be read-only.
Query this key value store to find out whether each item is present
(if possible match a list of values all at once instead of matching
one item at a time). Want this to be blazing fast. Will be using this functionality as the back-end to a REST API
Sidenote: Language of my preference is Python.
A few considerations for the fast lookup:
If you want to check a set of numbers at a time, you could use the Redis SINTER which performs set intersection.
You might benefit from using a grid structure by distributing number ranges over some hash function such as the first digit of the phone number (there are probably better ones, you have to experiment), this would e.g. reduce the size per node, when using an optimal hash, to near 20 million entries when using 10 nodes.
If you expect duplicate requests, which is quite likely, you could cache the last n requested phone numbers in a smaller set and query that one first.