Can i have any books about Azure Data Lake Internals? - azure-data-lake

I dont wanna use the ADL and ADLA as a black box. I need to understand how the gears rotate underhood to use it in an efficient way.
Where i can find an information that describe internals:
how U-SQL query is processed
how parallelism is worked
how storage is organized in ADL at low level
how DB's storage is organized in ADL at low level (is it rowstore or columnstore)
how partitioning is organized
etc
There is exists a lot of books and whitepappers that describes RDBMS engine's internals. Does it exists for ADL/ADLA?
There are a lot of guys who works in Azure. Could you publish any drafts/whitepappers to use as is (unoficially).

Some of that information is available in presentations we have given. For example you can find some of these presentations on my slideshare account at: http://www.slideshare.net/MichaelRys.
To answer some of your questions above:
The current clustered index version of U-SQL tables are stored in your catalog folder structured as so called structured stream files. These are highly compressible, scaled out files that use a row-oriented structure with self-contained meta data and statistics (more detailed stats can be created). The table construct provides 2 level partitioning: addressable partitions and internal distribution schemes (HASH, RANGE etc). Both help with parallelization, although distribution schemes are more for performance while partition more for data lifecycle management. There is no limit on them, although the sweet spot is 1GB to 4GB per distribution bucket.
1 AU is basically 1 container. And ADLS is NOT HDFS architecturally but offers the WebHDFS API for compatibility.

This is a pretty broad question. I assume you've started with the existing documentation on ADLA and U-SQL?
https://learn.microsoft.com/en-us/azure/data-lake-analytics/
https://msdn.microsoft.com/library/azure/mt591959
ADLA GA'd in November of 2016, compared to SQL Server in 1987 - that's a very apples and oranges comparison.
Maybe we can start with your specific questions?

Related

MarkLogic Backup OR Restore specific piece of data

I was wondering if a specific piece of data can be backed up or restored in MarkLogic.
Version 8.0-5.4 is used on CentOS, data has grown a lot.
I was wondering if for example only the last 3 month's data can be backed up OR from a full backup, only the last 3 month's of data can be restored to lower environments.
MarkLogic itself is unaware of the age of your content by default (unless you enabled tracking insert and update timestamps).
Furthermore, MarkLogic balances all content across all forests evenly based on the selected balancing strategy.
Some Ideas:
Archive:
In your system, find a way to isolate the old content (query or collection)
Then use MLCP to export the content to anarchive.
Or if you have hadoop, then use a similar strategy.
Then you can remove the content from the system
This makes it totally gone - but ahs the benefit of no index overhead if disk space is an issue.
Forests
Using a strategy as above to isolate your old content, move it all to a single forest.
Take that forest offline and detach it and then physically archive it. Unfortunately, this approach also includes the index data. You could purge them by hand - but that't a risky story for another time.
Note: If you were to upgrade to ML 9, then you could use time-based queries on your forest balancing strategy and roll all of your content onto a month-based forest each month and then archive the previous month - similar to log rotation.
Forest Backups
As each forest can be backed up on its own, then it is possible to consider creating a backup of the forest and then deleting that forest. I'm not sure of the benefits of this approach. I suppose that if indexes are not included in the backup, then this approach is superior to the MLCP/Hadoop approach.
Tiered Storage
I answered the question as I interpreted it. However, the full enterprise approach would be to embrace Tiered Storage and store various data on different media types to give the most cost-effective solution without the data actually going offline.

Are there any REAL advantages to NoSQL over RDBMS for structured data on one machine?

So I've been trying hard to figure out if NoSQL is really bringing that much value outside of auto-sharding and handling UNSTRUCTURED data.
Assuming I can fit my STRUCTURED data on a single machine OR have an effective 'auto-sharding' feature for SQL, what advantages do any NoSQL options offer? I've determined the following:
Document-based (MongoDB, Couchbase, etc) - Outside of it's 'auto-sharding' capabilities, I'm having a hard time understanding where the benefit is. Linked objects are quite similar to SQL joins, while Embedded objects significantly bloat doc size and causes a challenge regarding to replication (a comment could belong to both a post AND a user, and therefore the data would be redundant). Also, loss of ACID and transactions are a big disadvantage.
Key-value based (Redis, Memcached, etc) - Serves a different use case, ideal for caching but not complex queries
Columnar (Cassandra, HBase, etc ) - Seems that the big advantage here is more how the data is stored on disk, and mostly useful for aggregations rather than general use
Graph (Neo4j, OrientDB, etc) - The most intriguing, the use of both edges and nodes makes for an interesting value-proposition, but mostly useful for highly complex relational data rather than general use.
I can see the advantages of Key-value, Columnar and Graph DBs for specific use cases (Caching, social network relationship mapping, aggregations), but can't see any reason to use something like MongoDB for STRUCTURED data outside of it's 'auto-sharding' capabilities.
If SQL has a similar 'auto-sharding' ability, would SQL be a no-brainer for structured data? Seems to me it would be, but I would like the communities opinion...
NOTE: This is in regards to a typical CRUD application like a Social Network, E-Commerce site, CMS etc.
If you're starting off on a single server, then many advantages of NoSQL go out the window. The biggest advantages to the most popular NoSQL are high availability with less down time. Eventual consistency requirements can lead to performance improvements as well. It really depends on your needs.
Document-based - If your data fits well into a handful of small buckets of data, then a document oriented database. For example, on a classifieds site we have Users, Accounts and Listings as the core data. The bulk of search and display operations are against the Listings alone. With the legacy database we have to do nearly 40 join operations to get the data for a single listing. With NoSQL it's a single query. With NoSQL we can also create indexes against nested data, again with results queried without Joins. In this case, we're actually mirroring data from SQL to MongoDB for purposes of search and display (there are other reasons), with a longer-term migration strategy being worked on now. ElasticSearch, RethinkDB and others are great databases as well. RethinkDB actually takes a very conservative approach to the data, and ElasticSearch's out of the box indexing is second to none.
Key-value store - Caching is an excellent use case here, when you are running a medium to high volume website where data is mostly read, a good caching strategy alone can get you 4-5 times the users handled by a single server. Key-value stores (RocksDB, LevelDB, Redis, etc) are also very good options for Graph data, as individual mapping can be held with subject-predicate-target values which can be very fast for graphing options over the top.
Columnar - Cassandra in particular can be used to distribute significant amounts of load for even single-value lookups. Cassandra's scaling is very linear to the number of servers in use. Great for heavy read and write scenarios. I find this less valuable for live searches, but very good when you have a VERY high load and need to distribute. It takes a lot more planning, and may well not fit your needs. You can tweak settings to suite your CAP needs, and even handle distribution to multiple data centers in the box. NOTE: Most applications do emphatically NOT need this level of use. ElasticSearch may be a better fit in most scenarios you would consider HBase/Hadoop or Cassandra for.
Graph - I'm not as familiar with graph databases, so can't comment here (beyond using a key-value store as underlying option).
Given that you then comment on MongoDB specifically vs SQL ... even if both auto-shard. PostgreSQL in particular has made a lot of strides in terms of getting unstrictured data usable (JSON/JSONB types) not to mention the power you can get from something like PLV8, it's probably the most suited to handling the types of loads you might throw at a document store with the advantages of NoSQL. Where it happens to fall down is that replication, sharding and failover are bolted on solutions not really in the box.
For small to medium loads sharding really isn't the best approach. Most scenarios are mostly read so having a replica-set where you have additional read nodes is usually better when you have 3-5 servers. MongoDB is great in this scenario, the master node is automagically elected, and failover is pretty fast. The only weirdness I've seen is when Azure went down in late 2014, and only one of the servers came up first, the other two were almost 40 minutes later. With replication any given read request can be handled in whole by a single server. Your data structures become simpler, and your chances of data loss are reduced.
Again in my own example above, for a mediums sized classifieds site, the vast majority of data belongs to a single collection... it is searched against, and displayed from that collection. With this use case a document store works much better than structured/normalized data. The way the objects are stored are much closer to their representation in the application. There's less of a cognitive disconnect and it simply works.
The fact is that SQL JOIN operations kill performance, especially when aggregating data across those joins. For a single query for a single user it's fine, even with a dozen of them. When you get to dozens of joins with thousands of simultaneous users, it starts to fall apart. At this point you have several choices...
Caching - caching is always a great approach, and the less often your data changes, the better the approach. This can be anything from a set of memcache/redis instances to using something like MongoDB, RethinkDB or ElasticSearch to hold composite records. The challenge here comes down to updating or invalidating your cached data.
Migrating - migrating your data to a data store that better represents your needs can be a good idea as well. If you need to handle massive writes, or very massive read scenarios no SQL database can keep up. You could NEVER handle the likes of Facebook or Twitter on SQL.
Something in between - As you need to scale it depends on what you are doing and where your pain points are as to what will be the best solution for a given situation. Many developers and administrators fear having data broken up into multiple places, but this is often the best answer. Does your analytical data really need to be in the same place as your core operational data? For that matter do your logins need to be tightly coupled? Are you doing a lot of correlated queries? It really depends.
Personal Opinions Ahead
For me, I like the safety net that SQL provides. Having it as the central store for core data it's my first choice. I tend to treat RDBMS's as dumb storage, I don't like being tied to a given platform. I feel that many people try to over-normalize their data. Often I will add an XML or JSON field to a table so additional pieces of data can be stored without bloating the scheme, specifically if it's unlikely to ever be queried... I'll then have properties in my objects in the application code that store in those fields. A good example may be a payment... if you are currently using one system, or multiple systems (one for CC along with Paypal, Google, Amazon etc) then the details of the transaction really don't affect your records, why create 5+ tables to store this detailed data. You can even use JSON for primary storage and have computed columns derived and persisted from that JSON for broader query capability and indexing where needed. Databases like postgresql and mysql (iirc) offer direct indexing against JSON data as well.
When data is a natural fit for a document store, I say go for it... if the vast majority of your queries are for something that fits better to a single record or collection, denormalize away. Having this as a mirror to your primary data is great.
For write-heavy data you want multiple systems in play... It depends heavily on your needs here... Do you need fast hot-query performance? Go with ElasticSearch. Do you need absolute massive horizontal scale, HBase or Cassandra.
The key take away here is not to be afraid to mix it up... there really isn't a one size fits all. As an aside, I feel that if PostgreSQL comes up with a good in the box (for the open-source version) solution for even just replication and automated fail-over they're in a much better position than most at that point.
I didn't really get into, but feel I should mention that there are a number of SaaS solutions and other providers that offer hybrid SQL systems. You can develop against MySQL/MariaDB locally and deploy to a system with SQL on top of a distributed storage cluster. I still feel that HBase or ElasticSearch are better for logging and analitical data, but the SQL on top solutions are also compelling.
More: http://www.mongodb.com/nosql-explained
Schema-less storage (or schema-free). Ability to modify the storage (basically add new fields to records) without having to modify the storage 'declared' schema. RDBMSs require the explicit declaration of said 'fields' and require explicit modifications to the schema before a new 'field' is saved. A schema-free storage engine allows for fast application changes, just modify the app code to save the extra fields, or rename the fields, or drop fields and be done.
Traditional RDBMS folk consider the schema-free a disadvantage because they argue that on the long run one needs to query the storage and handling the heterogeneous records (some have some fields, some have other fields) makes it difficult to handle. But for a start-up the schema-free is overwhelmingly alluring, as fast iteration and time-to-market is all that matter (and often rightly so).
You asked us to assume that either the data can fit on a single machine, OR your database has an effective auto-sharding feature.
Going with the assumption that your SQL data has an auto-sharding feature, that means you're talking about running a cluster. Any time you're running a cluster of machines you have to worry about fault-tolerance.
For example, let's say you're using the simplest approach of sharding your data by application function, and are storing all of your user account data on server A and your product catalog on server B.
Is it acceptable to your business if server A goes down and none of your users can login?
Is it acceptable to your business if server B goes down and no one can buy things?
If not, you need to worry about setting up data replication and high-availability failover. Doable, but not pleasant or easy for SQL databases. Other types of sharding strategies (key, lookup service, etc) have the same challenges.
Many NoSQL databases will automatically handle replication and failovers. Some will do it out of the box, with very little configuration. That's a huge benefit from an operational point of view.
Full disclosure: I'm an engineer at FoundationDB, a NoSQL database that automatically handles sharding, replication, and fail-over with very little configuration. It also has a SQL layer so you you don't have to give up structured data.

Column-based query accelerator in SQL Server 2012

I have been researching, SQL Server 2012 (aka Denali) and Microsoft has a pre-release available. The pre-release is located here with some information on key features. As I have downloaded the pre-release and installed on a VM. I have been curious about the following key feature mentioned. But Im not sure of its ability.
Column-based query accelerator
Column-Based Query Accelerator will help dramatically increase query
performance ~10x and reduce
performance tuning through interactive
experiences with data for near instant
response times and streamlined setup
which removes the need to build
summary aggregates.
What I would like is to see some explanation of the performance enhancement and perhaps an example, as I do not understand What "Column-based query" acceleration is? Any Insight would be helpful.
Sounds like a Business Intelligence thing.
Query aren't "interactive" and don't generally have "summary aggregates".
MS has put a lot into Analysis Services.
Edit: it's also possible that it's already known and blogged about, but the marketing monkeys changed the name :-)
Columnar storage is a physical layout optimization where data is stored by columns, and not rows. In some use cases, the advantages here are many:
1) less read time - need to compute an aggregate on a value - no need to read the rest of the row - so less read time
2) data compression - as the column data is likely similar, you can get greater compression ratios
3) ordinal indexing (sometimes)
this approach falls apart when data is inserted and updated, but for read-only and append use-cases the performance benefits can be astounding.
Update
Refs
http://en.wikipedia.org/wiki/Column-oriented_DBMS
http://www.globaldataconsulting.net/articles/theory/columnar-databases-and-data-warehouse

MongoDB and PostgreSQL thoughts

I've got an app fully working with PostgreSQL. After reading about MongoDB, I was interested to see how the app would work with it. After a few weeks, I migrated the whole system to MongoDB.
I like a few things with MongoDB. However, I found certain queries I was doing in PostgreSQL, I couldn't do efficiently in MongoDB. Especially, when I had to join several tables to calculate some logic. For example, this.
Moreover, I am using Ruby on Rails 3, and an ODM called Mongoid. Mongoid is still in beta release. Documentation was good, but again, at times I found the ODM to be very limiting compared to what Active Record offered with traditional (SQL) database systems.
Even to this date, I feel more comfortable working with PostgreSQL than MongoDB. Only because I can join tables and do anything with the data.
I've made two types of backups. One with PostgreSQL and the other with MongoDB. Some say, some apps are more suitable with one or the other type of db. Should I continue with MongoDB and eventually hope for its RoR ODM (Mongoid) to fully mature, or should I consider using PostgreSQL?
A few more questions:
1) Which one would be more suitable for developing a social networking site similar to Facebook.
2) Which one would be more suitable for 4-page standard layout type of website (Home, Products, About, Contact)
You dumped a decades-tested, fully featured RDBMS for a young, beta-quality, feature-thin document store with little community support. Unless you're already running tens of thousands of dollars a month in servers and think MongoDB was a better fit for the nature of your data, you probably wasted a lot of time for negative benefit. MongoDB is fun to toy with, and I've built a few apps using it myself for that reason, but it's almost never a better choice than Postgres/MySQL/SQL Server/etc. for production applications.
Let's quote what you wrote and see what it tells us:
"I like a few things with Mongodb. However, I found certain queries I was
doing in PostgreSql, I couldn't do efficiently in Mongodb. Especially,
when I had to join several tables to calculate some logic."
"I found the ODM to be very limiting compared to what Active Record offered
with traditional (SQL) database systems."
"I feel more comfortable working with PostgreSql than Mongodb. Only because
I can join tables and do anything with the data."
Based on what you've said it looks to me like you should stick with PostgreSQL. Keep an eye on MongoDB and use it if and when it's appropriate. But given what you've said it sounds like PG is a better fit for you at present.
Share and enjoy.
I haven't used MongoDB yet, and may never get round to it as I haven't found anything I can't do with Postgres, but just to quote the PostgreSQL 9.2 release notes:
With PostgreSQL 9.2, query results can be returned as JSON data types.
Combined with the new PL/V8 Javascript and PL/Coffee database
programming extensions, and the optional HStore key-value store, users
can now utilize PostgreSQL like a "NoSQL" document database, while
retaining PostgreSQL's reliability, flexibility and performance.
So looks like in new versions of Postgres you can have the best of both worlds. I haven't used this yet either but as a bit of a fan of PostgreSQL (excellent docs / mailing lists) I wouldn't hesitate using it for almost anything RDBMS related.
First of all postgres is an RDBMS and MongoDB is NoSQL .
but Stand-alone NoSQL technologies do not meet ACID standards because they sacrifice critical data protections in favor of high throughput performance for unstructured applications.
Postgres 9.4 providing NoSQL capabilities along with full transaction support, storing JSON documents with constraints on the fields data.
so you will get all advantages from both RDBMS and NoSQL
check it out for detailed article http://www.aptuz.com/blog/is-postgres-nosql-database-better-than-mongodb/
To experience Postgres' NoSQL performance for yourself. Download the pg_nosql_benchmark at GitHub. here is the link https://github.com/EnterpriseDB/pg_nosql_benchmark
We also have research on the same that which is better. PostGres or MongoDb. but with all facts and figures in hand, we found that PostGres is far better to use than MongoDb. in MongoDb, beside eats up memory and CPU, it also occupies large amount of disk space. It's increasing 2x size of disk on certain interval.
My experience with Postgres and Mongo after working with both the databases in my projects .
Postgres(RDBMS)
Postgres is recommended if your future applications have a complicated schema that needs lots of joins or all the data have relations or if we have heavy writing. Postgres is open source, faster, ACID compliant and uses less memory on disk, and is all around good performant for JSON storage also and includes full serializability of transactions with 3 levels of transaction isolation.
The biggest advantage of staying with Postgres is that we have best of both worlds. We can store data into JSONB with constraints, consistency and speed. On the other hand, we can use all SQL features for other types of data. The underlying engine is very stable and copes well with a good range of data volumes. It also runs on your choice of hardware and operating system. Postgres providing NoSQL capabilities along with full transaction support, storing JSON documents with constraints on the fields data.
General Constraints for Postgres
Scaling Postgres Horizontally is significantly harder, but doable.
Fast read operations cannot be fully achieved with Postgres.
NO SQL Data Bases
Mongo DB (Wired Tiger)
MongoDB may beat Postgres in dimension of “horizontal scale”. Storing JSON is what Mongo is optimized to do. Mongo stores its data in a binary format called BSONb which is (roughly) just a binary representation of a superset of JSON. MongoDB stores objects exactly as they were designed. According to MongoDB, for write-intensive applications, Mongo says the new engine(Wired Tiger) gives users an up to 10x increase in write performance(I should try this), with 80 percent reduction in storage utilization, helping to lower costs of storage, achieve greater utilization of hardware.
General Constraints of MongoDb
The usage of a schema less storage engine leads to the problem of implicit schemas. These schemas aren’t defined by our storage engine but instead are defined based on application behavior and expectations.
Stand-alone NoSQL technologies do not meet ACID standards because they sacrifice critical data protections in favor of high throughput performance for unstructured applications. It’s not hard to apply ACID on NoSQL databases but it would make database slow and inflexible up to some extent.
“Most of the NoSQL limitations were optimized in the newer versions and releases which have overcome its previous limitations up to a great extent”.
Which one would be more suitable for developing a social networking site similar to Facebook?
Facebook currently uses combination of databases like Hive and Cassandra.
Which one would be more suitable for 4-page standard layout type of website (Home, Products, About, Contact)
Again it depends how you want to store and process your data. but any SQL or NOSQL database would do the job.

Combining Relational and Document based "Databases"

I am developing a system that is all about media archiving, searching, uploading, distributing and thus about handling BLOBs.
I am currently trying to find out the best way how to handle the BLOB's. I have limited resources for high end servers with a lot of memory and huge disks, but I can access a large array of medium performance off-the-shelf computers and hook them to the Internet.
Therefore I decided to not store the BLOBs in a central Relational Database, because I would then have, in the worst case, one very heavy Database Instance, possibly on a single average machine. Not an option.
Storing the BLOBs as files directly on the filesystem and storing their path in the database is also somewhat ugly and distribution would have to be managed manually, keeping track of the different copies myself. I don't even want to get close to that.
I looked at CouchDB and I really like their peer-to-peer based design. This would allow me to run a distributed cluster of machines across the Internet, implies:
Low cost Hardware
Distribution for Redundancy and Failover out of the box
Lightweight REST Interface
So if I got it right, one could summarize it like this: Cloud like API and self managed, distributed, replicated system
The rest of the system does the normal stuff any average web application does: handling session, security, users, searching and the like. For this part I still want to use a relational datamodel. (CouchDB claims not to be a replacement for relational databases).
So I would have all the standard data, including the BLOB's meta data in the relational database but the BLOBs themselves in CouchDB.
Do you see a problem with this approach? Am I missing something important? Can you think of better solutions?
Thank you!
You could try Amazon's relational database SimpleDB and S3 toghether with SimpleJPA. SimpleJPA is a JPA-implementation on top of SimpleDB. SimpleJPA uses SimpleDB for the relational structure and S3 to store BLOBs.
Take a look at MongoDB, it supports storing binary data in an efficient format and is incredibly fast
No problem. I have done a design very similar to that one. You may also want to take a peek to HBase as an alternative to CouchDB and to the Adaptive Object-Model architectural pattern, as a way to manage your data and meta-data.