How do I handle a nullable generics Class type in Kotlin?
Example function with generics:
fun <I> calculateStuff(valueType: Class<I>, defaultValue: I): I {
// do some work
return defaultValue;
}
Here is a calling function (note the 2nd param for calculateStuff(...))
fun doStuff() {
// works fine!
val myVar1 = calculateStuff(String::class.java, "")
// FAIL (null is not accepted... Error: "Cannot infer type parameter I in....")
val myVar2 = calculateStuff(String::class.java, null)
}
Work-around (change return type to I? AND defaultValue to I?):
fun <I> calculateStuff(valueType: Class<I>, defaultValue: I?): I? {
return defaultValue;
}
Preferred method, but does not seemed supported by Kotlin (note "String?::class.java"):
val myVar2 = calculateStuff(String?::class.java, null)
I really want to be able to send to the method (calculateStuff(...)) the return type, and if it can be null, as the first parameter... that way I ONLY have to null-check the return value if I pass a nullable Class in the first param.
Is this possible to do in Kotlin?
You need to change Class<I> to Class<out I>:
fun <I> calculateStuff(valueType: Class<out I>, defaultValue: I): I {
return defaultValue;
}
You can also do this using reified type parameters:
inline fun <reified I> calculateStuff(defaultValue: I): I {
// do some work
return defaultValue;
}
Usage:
val myVar1 = calculateStuff("") // myVar1 is String
val myVar2 = calculateStuff<String?>(null) // myVar2 is String?
Since there is no way to specify nullable classes as you discovered, your premise of limiting it by the first variable is not possible.
What is possible is to limit it by the nullability of the second variable by adding a second generic parameter:
fun <I, NI: I> calculateStuff(valueType: Class<NI>, defaultValue: I): I {
// do some work
return defaultValue;
}
val myVar2 = calculateStuff(String::class.java, null as String?) will now compile.
The reason this works is because in the kotlin type system, T is a subclass of T? so any non-nullable value is an acceptable value for a nullable type.
Related
I'm trying to make OK() to call ApiResponse constructor. When I give null to ApiResponse constructor argument, it shows error that type mismatches.
If I change data type to T? it works. Why is it happening? Default upper bound of T is Any? so i thought it won't be any problem to assign null.
class ApiResponse<T> private constructor(
val data: T, // If I change data type to T?, no error
val message: String?
) {
companion object {
fun <T> OK(): ApiResponse<T> {
return ApiResponse(null, null)
}
fun <T> OK(data: T): ApiResponse<T> {
return ApiResponse(data, null)
}
}
}
I've searched with keywords kotlin, generic, constructor, nullable, T but i could not find answer.
In
fun <T> OK(): ApiResponse<T> {
return ApiResponse(null, null)
}
if someone calls ApiResponse.OK<String>(), then it tries to construct an ApiResponse where data is null and also of type String, which is incompatible. None of your types prevent that call -- when you have a generic type argument to the function like that, the caller can specify any T they please, including a nonnull type.
You must either return an ApiResponse<T?>, or not have an argumentless OK factory method.
I want to overload function with the same parameters (or without parameters at all) and different return types. Correct implementation should be chosen by the type of variable I assign returning value of a function to.
The only way to do this I found is using reified generics and comparing KClass'es:
inline fun <reified T: Any> read(): T {
return read(T::class)
}
#Suppress("UNCHECKED_CAST")
fun <T: Any> read(t: KClass<T>): T {
return when (t) {
Int::class -> readInt() as T
UInt::class -> readUInt() as T
String::class -> readString() as T
// ...
else -> throw Exception("Unsupported type")
}
}
fun readInt(): Int {
// ...
}
fun readUInt(): UInt {
// ...
}
fun readString(): String {
// ...
}
The problem with this approach is that the compiler and IDEA are not smart enough to determine types at compile time for which there is no implementation. The most I can do is throw a runtime exception:
val int: Int = read()
val string: String = read()
val double: Double = read()
// ^^^^ No compile-time error here
Maybe I'm missing something and there is more "correct" way of doing this?
Maybe I'm missing something and there is more "correct" way of doing this?
No. You cannot do this at all. You must name the methods differently.
I'm working on extension method like this:
infix fun <T> T.isNullOr(other: T): Boolean {
if (this == null) return true
return this == other
}
and I'm trying to use this method like this.
val thisShouldWork = true isNullOr true // this is true
val thisShouldNotWork = true isNullOr 0 // No compilation errors?
I expected compilation error because type parameter is automatically set to Boolean for isNullOr but it wasn't. What's happening?
am I misunderstanding about it?
in C#, same code working well as I expected.
static bool IsNullOr<T>(this T t, T other) {
if (t == null) return true;
return Equals(t, other);
}
bool howAboutThis = 0.IsNullOr(0);
bool andThis = 0.IsNullOr(false); // error - cannot detect type parameter for this
Here, val thisShouldNotWork = true isNullOr 0 is equal to val thisShouldNotWork: Boolean = true.isNullOr<Any>(0). Type parameter as inferred as the closest parent.
And function's return type is based on logical expression evaluation: this == other. Let's see == function declaration: public open operator fun equals(other: Any?): Boolean. It receives Any?.
Type parameter in this function has nothing to do with Boolean.
Just remember that generic type information is erased at runtime and whenever you try to put something into a method that accepts generics, then the common denominator is assumed, e.g.:
listOf("one", 123) // -> assumes T:Any and therefore gives List<Any>
Now for your example that would mean "one".isNullOr(123) both become Any.
As a sidenote however, if you declare a specific type (e.g. List<String>) as shown next, it will not work to assign a different type to it:
val test : List<String> = listOf(123) // this will not work
It is already known at compile time that the given int can't become a string. This sample however doesn't help you as you do not return that generic type. If your method just looked a bit different, e.g. would have a generic type as return value, it might easily have worked out similar to the List-sample before.
So to fix your sample you need to specify the type which will basically make the infix obsolete, e.g. the following will work as you expect:
val someString : String? = TODO()
val works = someString.isNullOr<String?>("other")
val doesntWork = someString.isNullOr<Int?>(123) // does not nor does:
val doesntWorkToo = someString.isNullOr<String?>(123)
Note that for what you've shown some standard functionality might help you (but not eliminate that specific problem), i.e. using the ?: (elvis operator) with a ?.let:
val someVal : String? = "someString given from somewhere"
val thisWorks = someVal?.let {
it == "some other string to compare"
} ?: true /* which basically means it was null */
val thisWillNot = someVal?.let {
it == 123 // compile error (funny enough: it.equals(123) would work ;-)
} ?: true /* it is null */
I think in this case the generics don't really matter. You only call equals in the method, which you can do on any type. It's basically the same as:
infix fun Any.isNullOr(other: Any): Boolean {
return this == other
}
It compiles without problems because you can always call equals with anything: other: Any?
Thank for answers. I think there is no way to prevent this at compilation level, so I decided to check type for other.
inline infix fun <reified T> T.isNullOr(other: T): Boolean {
if (this == null) return true
if (other !is T) return false
return this == other
}
If you really want to prevent it, you can:
class IsNullOr<T>(val x: T) {
operator fun invoke(other: T): Boolean {
if (x == null) return true
return x == other
}
}
fun <T> T.isNullOr() = IsNullOr(this)
fun main(args: Array<String>) {
val thisShouldWork = true.isNullOr()(true) // compiles
val thisShouldNotWork = true.isNullOr()(0) // doesn't compile
}
This makes type inference depend only on the receiver of isNullOr. If vals could be generic, you'd even keep the original syntax (but they can't).
Is it possible to have a variable that can holds any type function.
Like :
fun method1(par: Boolean){}
fun method2(par: Boolean) : Int{return 1}
fun method3(par: Boolean, par2: Boolean) : Int{return 1}
var funtionHolder : ((Any)->Any) ?= null //What should I write here?? so to hold any type of function
fun method4(){
.........
funtionHolder = ::method1 //getting compile time error
.........
funtionHolder = ::method2 //getting compile time error
.........
funtionHolder = ::method3 //getting compile time error
}
After holding the function_reference I need to invoke it later. So I need to holds it parameter type and state also.
You can hold them in a KFunction<Any> or its superclass KCallable<Any> because you know nothing about the parameter list and nothing about the return type, so you have to go to something that can reference at that level of abstraction. These instances can then be invoked more generically using the call() or callBy() methods. (this requires the kotlin-reflect dependency). To do something safer and to call like a normal function you'd have to cast back to the specific function type later.
If you want to avoid this, you'll need to unify your signatures to something you can point to with another function type (i.e. KFunction1 or KFunction2). Otherwise how you'll call this, what you'll do with it will be up to you at this point because you erased all the information that allows you to easily call the function.
val functionHolder1: KFunction<Any> = ::method1 // success!
val functionHolder2: KFunction<Any> = ::method2 // success!
val functionHolder3: KFunction<Any> = ::method3 // success!
You can then make a DeferredFunction class to hold these along with parameters you want to later pass, and then invoke it whenever in the future.
class DeferredFunction(val function: KFunction<Any>, vararg val params: Any?) {
#Suppress("UNCHECKED_CAST")
operator fun <T> invoke(): T {
return function.call(params) as T
}
}
fun whatever(name: String, age: Int): String {
return "$name of age $age"
}
val functionHolder = DeferredFunction(::whatever, "Fred", 65)
println(functionHolder<String>()) // "Fred of age 65"
You do not need the generic return type on the invoke function and could just make it return Any or call it as functionHolder<Any>() but it is nice if you know what to expect for the return. You can decide what to do there based on your actual use case. Also no need to special case for no parameters, just don't pass any, i.e. DeferredFunction(::otherFunc)
With reference from Jayson's answer, added extra code to hold the state of the function by using vararg and spread operator(*).
var functionHolder: KFunction<Any> ?= null
var paramsHolder : Array<out Any?> ?= null
fun hold(functionReference : KFunction<Any>, vararg args : Any?) {
this.functionHolder = functionReference
this.paramsHolder = args
}
fun release() {
if (functionHolder != null) {
if (paramsHolder != null) {
functionHolder?.call(*paramsHolder!!)
} else {
functionHolder?.call()
}
}
}
......
fun method3(par: Boolean, par2: Boolean) : Int{return 1}
......
hold(::method3, true, false)
release()//it works
No. Kotlin is static typed language and doesn't allow this. Else what happens when this is called?
functionHolder->invoke(3)
and when functionHolder is assigned a lamda that doesn't take parameter?
I want a class which is equivalent to Java Optional but also
Properly handles null value ("Not set" state is different from "Null set")
Is mutable
Uses Kotlin built-in null-safety, type parameter can be either nullable or non-nullable which affects all methods.
Non-working code:
class MutableOptional<T> {
private var value: T? = null
private var isSet: Boolean = false
fun set(value: T)
{
this.value = value
isSet = true
}
fun unset()
{
isSet = false
value = null
}
fun get(): T
{
if (!isSet) {
throw Error("Value not set")
}
return value!! // <<< NPE here
}
}
fun f()
{
val opt = MutableOptional<Int?>()
opt.set(null)
assertNull(opt.get())
}
The problem is that if I try to set null, get() call fails with null pointer exception (caused by !! operator).
Some not-working proposals:
Do not use members of type "T?" in such class. I would not use it if I knew how to leave them uninitialized (not allowed by the compiler) or how to make them to have default initialization.
Use "fun get(): T?" (with nullable result). I want the result type to have the same nullability as the class type parameter. Otherwise there is no meaning in such null-safety if it is lost in a simple generic class, and I will need to set !! manually where I am sure it is non-nullable (the thing the compiler should ensure), making my code looking like wedge-writing.
Note: This example is synthetic, I do not really need the mutable optional, it is just a simple and understandable example, illustrating a problem I encounter occasionally with Kotlin generics and null-safety. Finding solution to this particular example will help with many similar problems. Actually I have a solution for immutable version of this class but it involves making interface and two implementation classes for present and non-present values. Such immutable optional can be used as type of "value" member but I think it's quite big overhead (accounting also wrapper object creation for each set()) just to overcome the language constraints.
The compiler wants you to write code that will be type-safe for all possible T, both nullable and not-null (unless you specify a not-null upper bound for the type parameter, such as T : Any, but this is not what you need here).
If you store T? in a property, it is a different type from T in case of not-null type arguments, so you are not allowed to use T and T? interchangeably.
However, making an unchecked cast allows you to bypass the restriction and return the T? value as T. Unlike the not-null assertion (!!), the cast is not checked at runtime, and it won't fail when it encounters a null.
Change the get() function as follows:
fun get(): T {
if (!isSet) {
throw Error("Value not set")
}
#Suppress("unchecked_cast")
return value as T
}
I got a similar issue. My use case was to differentiate null and undefined value when I deserialize JSON object. So I create an immutable Optional that was able to handle null value. Here I share my solution:
interface Optional<out T> {
fun isDefined(): Boolean
fun isUndefined(): Boolean
fun get(): T
fun ifDefined(consumer: (T) -> Unit)
class Defined<out T>(private val value: T) : Optional<T> {
override fun isDefined() = true
override fun isUndefined() = false
override fun get() = this.value
override fun ifDefined(consumer: (T) -> Unit) = consumer(this.value)
}
object Undefined : Optional<Nothing> {
override fun isDefined() = false
override fun isUndefined() = true
override fun get() = throw NoSuchElementException("No value defined")
override fun ifDefined(consumer: (Nothing) -> Unit) {}
}
}
fun <T> Optional<T>.orElse(other: T): T = if (this.isDefined()) this.get() else other
The trick: the orElse method have to be defined as an extension to not break the covariance, because Kotlin does not support lower bound for now.
Then we can define a MutableOptional with no cast in the following way:
class MutableOptional<T> {
private var value: Optional<T> = Optional.Undefined
fun get() = value.get()
fun set(value: T) { this.value = Optional.Defined(value) }
fun unset() { this.value = Optional.Undefined }
}
I am happy with my immutable Optional implementation. But I am not very happy with MutableOptional: I dislike the previous solution based on casting (I dislike to cast). But my solution creates unnecessary boxing, it can be worst...