SystemC: How can I trace all signals in module hierarchy? - systemc

I want to trace all signals in my design to VCD file. Is possible to automate this process? I don't want add each signal to trace manually ( with sc_trace (..) )

I've ended up with implementing script for GDB debugger that automatically traces signals and other sc_module members in design.
In case it will be useful for someone else, here are sources:
https://github.com/ripopov/gdb_systemc_trace

Related

How to debug a freeRTOS application?

How do you debug an RTOS application? I am using KEIL µVision and when I hit debug, the program steps through the main function until the function that initializes the RTOS kernel and then you can't step any further. The code itself works though. It is not mine btw, but I have to work on it. Is this normal behavior with RTOS applications or is this related to the program?
Yes, this is normal. You need to set breakpoints in the source code for the tasks that were created in main(): the only purpose of main() in a FreeRTOS application is to :
initialize the hardware,
create the resources (timers, semaphores...) and tasks your application will need,
start the scheduler
The application should never return from vTaskStartScheduler() if they were enough resources available.
Put break-points at the entry point of each task you need to debug. When you step the over the scheduler start (or simply run) the debugger will halts at the first task that runs. When that task blocks, some other task will be selected to run according to the scheduling rules.
Generally when debugging and you reach a blocking call, step-over it, other tasks may run and the debugger will stop at the next line only when the task becomes ready (depending on the nature of the blocking call). Often you will want to predict what task will run as a result of the call, and put a breakpoint in that task. For example if you issue a message send, you might place a breakpoint after the message receive call of the receiving task.
The point is you cannot "step-through" a context switch unless you have the RTOS source or do it at the assembler level, which is seldom useful or productive, and will not work for preemption.
You get a somewhat better RTOS debug experience and tool support in Keil if you use Keil's own RTX5 RTOS rather then FreeRTOS, but all of the above remains true.
Yes, this is an expected behaviour. The best way to debug a RTOS application is to place breakpoints at all tasks, key function entry points and step debug.
The debugger supports various methods of single-stepping through an application as in below link.
http://www.keil.com/products/uvision/db_exe_step.asp
Typical challenges in debugging RTOS application can be dealing with interrupt handling, synchronization issues and register/memory corruption.
Keil µVision's System Analyzer enables one to view the program execution time frame, status of each thread. It shall also help in viewing interrupts, exceptions if tracer is enabled.

HardFault cortex, how do i debug it

I'm using a cortex m4 with freertos and i receive the following error
Err: -110595: Hardfault occurred!
I have no idea what to check.
The meaning is CRIT_ERR_HARD_FAULT but how do i trace it back?
It's always tricky and there is no common checklist what should be checked to give you 100% chance for quick success here.
Anyway checking several registers' values should give you enough information to proceed. To do it, you have to know what's the procedure of entering an exception - especially what's happening with core registers and the stack: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Babefdjc.html
If you can use online debugging, put a breakpoint in hard fault handler and check the following:
stacked PC - as written in the article above, on exception entry ARM core automatically pushes registers r0,r1,r2,r3,sp,lr,pc and psr on stack. Look it up to check where the program was before execution
current LR - to verify if you came from Thread mode (normal program execution) or another interrupt compare current LR with the table in the article
ISR_NUMBER in IPSR being part of current PSR - to verify whether in fact hard fault exception occurred or your hard fault handler is used as a sink for all types of faults
CFSR and other fault related registers in SCB - it should give you more information what's exactly caused the problem. Since SCB is a peripheral block, it's not visible in most IDEs by default. Install peripheral plugin or simply access addresses via memory inspection window http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Cihcfefj.html
If you're unable to do online debugging, you'll need a feature which will dump these registers somehow.
Good luck!
Are your HardFault handlers strongly defined? If you have the ability to connect a debugger and the fault is reproducible you can set a breakpoint in your fault handler and check the stack trace for possible areas of interest.
Alternatively, this guide provides a highly portable and useful method of diagnosing hard faults and gathering information post fault for the ARM processor.

What happens if an MPI process crashes?

I am evaluating different multiprocessing libraries for a fault tolerant application. I basically need any process to be allowed to crash without stopping the whole application.
I can do it using the fork() system call. The limit here is that the process can be created on the same machine, only.
Can I do the same with MPI? If a process created with MPI crashes, can the parent process keep running and eventually create a new process?
Is there any alternative (possibly multiplatform and open source) library to get the same result?
As reported here, MPI 4.0 will have support for fault tolerance.
If you want collectives, you're going to have to wait for MPI-3.something (as High Performance Mark and Hristo Illev suggest)
If you can live with point-to-point, and you are a patient person willing to raise a bunch of bug reports against your MPI implementation, you can try the following:
disable the default MPI error handler
carefully check every single return code from your MPI programs
keep track in your application which ranks are up and which are down. Oh, and when they go down they can never get back. but you're unable to use collectives anyway (see my opening statement), so that's not a huge deal, right?
Here's an old paper (back when Bill still worked at Argonne. I think it's from 2003):
http://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf . It lays out the kinds of fault tolerant things one can do in MPI. Perhaps such a "constrained MPI" might still work for your needs.
If you're willing to go for something research quality, there's two implementations of a potential fault tolerance chapter for a future version of MPI (MPI-4?). The proposal is called User Level Failure Mitigation. There's an experimental version in MPICH 3.2a2 and a branch of Open MPI that also provides the interfaces. Both are far from production quality, but you're welcome to try them out. Just know that since this isn't in the MPI Standard, the function prefixes are not MPI_*. For MPICH, they're MPIX_*, for the Open MPI branch, they're OMPI_* (though I believe they'll be changing theirs to be MPIX_* soon as well.
As Rob Latham mentioned, there will be lots of work you'll need to do within your app to handle failures, though you don't necessarily have to check all of your return codes. You can/should use MPI error handlers as a callback function to simplify things. There's information/examples in the spec available along with the Open MPI branch.

Track all ObjC method calls?

Sometimes when looking at someone else's large Objective-C program, it is hard to know where to begin.
In such situations, I think it would be helpful to log every call to every non-Apple method.
Is there a way to do that? Basically, make one change in some central place, and log every method that is called. Preferably limited to non-Apple methods.
You can set the environment variable NSObjCMessageLoggingEnabled to YES. This will write a log of all message sends in the folder /tmp/msgSends-xxx.
You could add a symbolic breakpoint to objc_msgSend(), and have it log the second parameter without stopping.
How to do it for your own methods only though is a toucher task. Maybe if you could inspect the class name being called and do some magic to have a conditional breakpoint for only calls where the class' prefix matches your own?
I don't think logging every single call is practical enough to be useful, but here's a suggestion in that direction.
On a side note, if it's a large program, it better have some kind of documentation or an intro comment for people to get started with the code.
In any case, every Cocoa application has an applicationDidFinishLaunching... method. It's a good place to start from. Some apps also have their principal (or 'main window') class defined in the Info.plist file. Both these things might give you a hint as to what classes (specifically, view controllers) are the most prominent ones and what methods are likely to have long stack-traces while the program is running. Like a game-loop in a game engine, or some other frequently called method. By placing a breakpoint inside such a method and looking at the stack-trace in the debugger, you can get a general idea of what's going on.
If it's a UI-heavy app, looking at its NIB files and classes used in them may also help identify parts of app's functionality you might be looking for.
Another option is to fire up the Time Profiler instrument and check both Hide missing symbols and Hide system libraries checkboxes. This will give you not only a bird's eye view on the methods being called inside the program, but also will pin-point the most often called ones.
By interacting with your program with the Time Profiler recording on, you could also identify different parts of the program's functionality and correlate them with your actions pretty easily.
Instruments allows you to build your own "instruments", which are really just DTrace scripts in disguise. Use the menu option Instrument >> Build New Instrument and select options like which library you'd like to trace, what you'd like to record when you hit particular functions, etc. Go wild!
That's an interesting question. The answer would be more interesting if the solution supported multiple execution threads and there were some sort of call timeline that could report the activity over time (maybe especially with user events plotted in somehow).
I usually fire up the debugger, set a breakpoint at the main entry point (e.g. - applicationDidFinishLaunching:withOptions:) and walk it in the debugger.
On OSX, there are also some command-line tools (e.g. sample and heap) that can provide some insight.
It seems like some kind of integration with instruments could be really cool, but I am not aware of something that does exactly what you're wanting (and I want it now too after thinking about it).
If one were to log a thread number, and call address, and some frame details, it seems like the pieces would be there to plot the call timeline. The logic for figuring out the appropriate library (Apple-provided or third party) should exist in Apple's symbolicatecrash script.

How would I go about taking a snapshot of a process to preserve its state for future investigation? Is this possible?

Whether this is possible I don't know, but it would mighty useful!
I have a process that fails periodically (running in Windows 2000). I then have just one chance to react to it before having to restart it and painfully wait for it to fail again. I didn't write the process so don't have the source to debug. The failure is seemingly random.
With a snapshot of the process I could repeatedly and quickly test reactions to the failure.
I had thought of running inside a VM but this isn't possible in this instance.
EDIT:
#Jon Cage asked:
When you say a snapshot, you mean capturing a process when it's about to fail (including memory, program state etc. etc.) ...and then replaying it's final few seconds repeatedly to see what effect it has on some other component?
This is exactly what I mean!
I think minidump is what you are looking for.
You can also used Userdump:
The User Mode Process Dumper
(userdump) dumps any running Win32
processes memory image (including
system processes such as csrss.exe,
winlogon.exe, services.exe, etc) on
the fly, without attaching a debugger,
or terminating target processes.
Generated dump file can be analyzed or
debugged by using the standard
debugging tools.
This article shows you how to use it.
My best bet is to start the process in a debugger (OllyDbg being my preferred tool).
The process will pause on an exception, and you can try to figure out what happened shortly before that.
This needs some understanding of assembler and does not allow to create a snapshot of the process for later analysis. You would need to write your own debugger for that - it should be theoretically possible.