Gemfire WAN with Peer to Peer combined - gemfire

We are using the multi-site WAN configuration. We have two clusters across geographical distances in North America and Europe.
Context: Cluster 1 has two members A and B that are both gateway senders. Cluster B has two members C and D that are both gateway receivers. When member A in cluster 1 starts, it reads data from database and loads it into the gemfire cache which gets sent to the cluster 2. Everything so far is good.
Problem: If both members in Cluster 2 are restarted at the same time, they lose all the gemfire regions/data. At that point, we could restart member A in cluster 1, it again loads data from the DB and gets pushed to cluster B. But we would prefer to avoid the restart of member A and without persisting to hard disk.
Is there a solution where if cluster 2 is restarted, it can request a full copy of data from cluster 1?
Not sure if it's possible, but could we somehow setup peer to peer for the gateway receivers in cluster 2 (on top of WAN), so they would be updated automatically upon restart.
Thanks

Getting a full copy of data over WAN is not supported at this time. What you could do instead is run a function on all members of site A, that simply iterates over all data and puts it back again in the region. i.e something like:
public void execute(FunctionContext context) {
RegionFunctionContext ctx = (RegionFunctionContext)context;
Region localData = PartitionRegionHelper.getLocalDataForContext(ctx);
for (Object key : localData.keySet()) {
Object val = localData.get(key);
localData.put(key, val);
}
}

Related

Infinispan clustered lock performance does not improve with more nodes?

I have a piece of code that is essentially executing the following with Infinispan in embedded mode, using version 13.0.0 of the -core and -clustered-lock modules:
#Inject
lateinit var lockManager: ClusteredLockManager
private fun getLock(lockName: String): ClusteredLock {
lockManager.defineLock(lockName)
return lockManager.get(lockName)
}
fun createSession(sessionId: String) {
tryLockCounter.increment()
logger.debugf("Trying to start session %s. trying to acquire lock", sessionId)
Future.fromCompletionStage(getLock(sessionId).lock()).map {
acquiredLockCounter.increment()
logger.debugf("Starting session %s. Got lock", sessionId)
}.onFailure {
logger.errorf(it, "Failed to start session %s", sessionId)
}
}
I take this piece of code and deploy it to kubernetes. I then run it in six pods distributed over six nodes in the same region. The code exposes createSession with random Guids through an API. This API is called and creates sessions in chunks of 500, using a k8s service in front of the pods which means the load gets balanced over the pods. I notice that the execution time to acquire a lock grows linearly with the amount of sessions. In the beginning it's around 10ms, when there's about 20_000 sessions it takes about 100ms and the trend continues in a stable fashion.
I then take the same code and run it, but this time with twelve pods on twelve nodes. To my surprise I see that the performance characteristics are almost identical to when I had six pods. I've been digging in to the code but still haven't figured out why this is, I'm wondering if there's a good reason why infinispan here doesn't seem to perform better with more nodes?
For completeness the configuration of the locks are as follows:
val global = GlobalConfigurationBuilder.defaultClusteredBuilder()
global.addModule(ClusteredLockManagerConfigurationBuilder::class.java)
.reliability(Reliability.AVAILABLE)
.numOwner(1)
and looking at the code the clustered locks is using DIST_SYNC which should spread out the load of the cache onto the different nodes.
UPDATE:
The two counters in the code above are simply micrometer counters. It is through them and prometheus that I can see how the lock creation starts to slow down.
It's correctly observed that there's one lock created per session id, this is per design what we'd like. Our use case is that we want to ensure that a session is running in at least one place. Without going to deep into detail this can be achieved by ensuring that we at least have two pods that are trying to acquire the same lock. The Infinispan library is great in that it tells us directly when the lock holder dies without any additional extra chattiness between pods, which means that we have a "cheap" way of ensuring that execution of the session continues when one pod is removed.
After digging deeper into the code I found the following in CacheNotifierImpl in the core library:
private CompletionStage<Void> doNotifyModified(K key, V value, Metadata metadata, V previousValue,
Metadata previousMetadata, boolean pre, InvocationContext ctx, FlagAffectedCommand command) {
if (clusteringDependentLogic.running().commitType(command, ctx, extractSegment(command, key), false).isLocal()
&& (command == null || !command.hasAnyFlag(FlagBitSets.PUT_FOR_STATE_TRANSFER))) {
EventImpl<K, V> e = EventImpl.createEvent(cache.wired(), CACHE_ENTRY_MODIFIED);
boolean isLocalNodePrimaryOwner = isLocalNodePrimaryOwner(key);
Object batchIdentifier = ctx.isInTxScope() ? null : Thread.currentThread();
try {
AggregateCompletionStage<Void> aggregateCompletionStage = null;
for (CacheEntryListenerInvocation<K, V> listener : cacheEntryModifiedListeners) {
// Need a wrapper per invocation since converter could modify the entry in it
configureEvent(listener, e, key, value, metadata, pre, ctx, command, previousValue, previousMetadata);
aggregateCompletionStage = composeStageIfNeeded(aggregateCompletionStage,
listener.invoke(new EventWrapper<>(key, e), isLocalNodePrimaryOwner));
}
The lock library uses a clustered Listener on the entry modified event, and this one uses a filter to only notify when the key for the lock is modified. It seems to me the core library still has to check this condition on every registered listener, which of course becomes a very big list as the number of sessions grow. I suspect this to be the reason and if it is it would be really really awesome if the core library supported a kind of key filter so that it could use a hashmap for these listeners instead of going through a whole list with all listeners.
I believe you are creating a clustered lock per session id. Is this what you need ? what is the acquiredLockCounter? We are about to deprecate the "lock" method in favour of "tryLock" with timeout since the lock method will block forever if the clustered lock is never acquired. Do you ever unlock the clustered lock in another piece of code? If you shared a complete reproducer of the code will be very helpful for us. Thanks!

Akka.NET with persistence dropping messages when CPU in under high pressure?

I make some performance testing of my PoC. What I saw is my actor is not receiving all messages that are sent to him and the performance is very low. I sent around 150k messages to my app, and it causes a peak on my processor to reach 100% utilization. But when I stop sending requests 2/3 of messages are not delivered to the actor. Here is a simple metrics from app insights:
To prove I have almost the same number of event persistent in mongo that my actor received messages.
Secondly, performance of processing messages is very disappointing. I get around 300 messages per second.
I know Akka.NET message delivery is at most once by default but I don't get any error saying that message were dropped.
Here is code:
Cluster shard registration:
services.AddSingleton<ValueCoordinatorProvider>(provider =>
{
var shardRegion = ClusterSharding.Get(_actorSystem).Start(
typeName: "values-actor",
entityProps: _actorSystem.DI().Props<ValueActor>(),
settings: ClusterShardingSettings.Create(_actorSystem),
messageExtractor: new ValueShardMsgRouter());
return () => shardRegion;
});
Controller:
[ApiController]
[Route("api/[controller]")]
public class ValueController : ControllerBase
{
private readonly IActorRef _valueCoordinator;
public ValueController(ValueCoordinatorProvider valueCoordinatorProvider)
{
_valueCoordinator = valuenCoordinatorProvider();
}
[HttpPost]
public Task<IActionResult> PostAsync(Message message)
{
_valueCoordinator.Tell(message);
return Task.FromResult((IActionResult)Ok());
}
}
Actor:
public class ValueActor : ReceivePersistentActor
{
public override string PersistenceId { get; }
private decimal _currentValue;
public ValueActor()
{
PersistenceId = Context.Self.Path.Name;
Command<Message>(Handle);
}
private void Handle(Message message)
{
Context.IncrementMessagesReceived();
var accepted = new ValueAccepted(message.ValueId, message.Value);
Persist(accepted, valueAccepted =>
{
_currentValue = valueAccepted.BidValue;
});
}
}
Message router.
public sealed class ValueShardMsgRouter : HashCodeMessageExtractor
{
public const int DefaultShardCount = 1_000_000_000;
public ValueShardMsgRouter() : this(DefaultShardCount)
{
}
public ValueShardMsgRouter(int maxNumberOfShards) : base(maxNumberOfShards)
{
}
public override string EntityId(object message)
{
return message switch
{
IWithValueId valueMsg => valueMsg.ValueId,
_ => null
};
}
}
akka.conf
akka {
stdout-loglevel = ERROR
loglevel = ERROR
actor {
debug {
unhandled = on
}
provider = cluster
serializers {
hyperion = "Akka.Serialization.HyperionSerializer, Akka.Serialization.Hyperion"
}
serialization-bindings {
"System.Object" = hyperion
}
deployment {
/valuesRouter {
router = consistent-hashing-group
routees.paths = ["/values"]
cluster {
enabled = on
}
}
}
}
remote {
dot-netty.tcp {
hostname = "desktop-j45ou76"
port = 5054
}
}
cluster {
seed-nodes = ["akka.tcp://valuessystem#desktop-j45ou76:5054"]
}
persistence {
journal {
plugin = "akka.persistence.journal.mongodb"
mongodb {
class = "Akka.Persistence.MongoDb.Journal.MongoDbJournal, Akka.Persistence.MongoDb"
connection-string = "mongodb://localhost:27017/akkanet"
auto-initialize = off
plugin-dispatcher = "akka.actor.default-dispatcher"
collection = "EventJournal"
metadata-collection = "Metadata"
legacy-serialization = off
}
}
snapshot-store {
plugin = "akka.persistence.snapshot-store.mongodb"
mongodb {
class = "Akka.Persistence.MongoDb.Snapshot.MongoDbSnapshotStore, Akka.Persistence.MongoDb"
connection-string = "mongodb://localhost:27017/akkanet"
auto-initialize = off
plugin-dispatcher = "akka.actor.default-dispatcher"
collection = "SnapshotStore"
legacy-serialization = off
}
}
}
}
So there are two issues going on here: actor performance and missing messages.
It's not clear from your writeup, but I'm going to make an assumption: 100% of these messages are going to a single actor.
Actor Performance
The end-to-end throughput of a single actor depends on:
The amount of work it takes to route the message to the actor (i.e. through the sharding system, hierarchy, over the network, etc)
The amount of time it takes the actor to process a single message, as this determines the rate at which a mailbox can be emptied; and
Any flow control that affects which messages can be processed when - i.e. if an actor uses stashing and behavior switching, the amount of time an actor spends stashing messages while waiting for its state to change will have a cumulative impact on the end-to-end processing time for all stashed messages.
You will have poor performance due to item 3 on this list. The design that you are implementing calls Persist and blocks the actor from doing any additional processing until the message is successfully persisted. All other messages sent to the actor are stashed internally until the previous one is successfully persisted.
Akka.Persistence offers four options for persisting messages from the point of view of a single actor:
Persist - highest consistency (no other messages can be processed until persistence is confirmed), lowest performance;
PersistAsync - lower consistency, much higher performance. Doesn't wait for the message to be persisted before processing the next message in the mailbox. Allows multiple messages from a single persistent actor to be processed concurrently in-flight - the order in which those events are persisted will be preserved (because they're sent to the internal Akka.Persistence journal IActorRef in that order) but the actor will continue to process additional messages before the persisted ones are confirmed. This means you probably have to modify your actor's in-memory state before you call PersistAsync and not after the fact.
PersistAll - high consistency, but batches multiple persistent events at once. Same ordering and control flow semantics as Persist - but you're just persisting an array of messages together.
PersistAllAsync - highest performance. Same semantics as PersistAsync but it's an atomic batch of messages in an array being persisted together.
To get an idea as to how the performance characteristics of Akka.Persistence changes with each of these methods, take a look at the detailed benchmark data the Akka.NET organization has put together around Akka.Persistence.Linq2Db, the new high performance RDBMS Akka.Persistence library: https://github.com/akkadotnet/Akka.Persistence.Linq2Db#performance - it's a difference between 15,000 per second and 250 per second on SQL; the write performance is likely even higher in a system like MongoDB.
One of the key properties of Akka.Persistence is that it intentionally routes all of the persistence commands through a set of centralized "journal" and "snapshot" actors on each node in a cluster - so messages from multiple persistent actors can be batched together across a small number of concurrent database connections. There are many users running hundreds of thousands of persistent actors simultaneously - if each actor had their own unique connection to the database it would melt even the most robustly vertically scaled database instances on Earth. This connection pooling / sharing is why the individual persistent actors rely on flow control.
You'll see similar performance using any persistent actor framework (i.e. Orleans, Service Fabric) because they all employ a similar design for the same reasons Akka.NET does.
To improve your performance, you will need to either batch received messages together and persist them in a group with PersistAll (think of this as de-bouncing) or use asynchronous persistence semantics using PersistAsync.
You'll also see better aggregate performance if you spread your workload out across many concurrent actors with different entity ids - that way you can benefit from actor concurrency and parallelism.
Missing Messages
There could be any number of reasons why this might occur - most often it's going to be the result of:
Actors being terminated (not the same as restarting) and dumping all of their messages into the DeadLetter collection;
Network disruptions resulting in dropped connections - this can happen when nodes are sitting at 100% CPU - messages that are queued for delivery at the time can be dropped; and
The Akka.Persistence journal receiving timeouts back from the database will result in persistent actors terminating themselves due to loss of consistency.
You should look for the following in your logs:
DeadLetter warnings / counts
OpenCircuitBreakerExceptions coming from Akka.Persistence
You'll usually see both of those appear together - I suspect that's what is happening to your system. The other possibility could be Akka.Remote throwing DisassociationExceptions, which I would also look for.
You can fix the Akka.Remote issues by changing the heartbeat values for the Akka.Cluster failure-detector in configuration https://getakka.net/articles/configuration/akka.cluster.html:
akka.cluster.failure-detector {
# FQCN of the failure detector implementation.
# It must implement akka.remote.FailureDetector and have
# a public constructor with a com.typesafe.config.Config and
# akka.actor.EventStream parameter.
implementation-class = "Akka.Remote.PhiAccrualFailureDetector, Akka.Remote"
# How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s
# Defines the failure detector threshold.
# A low threshold is prone to generate many wrong suspicions but ensures
# a quick detection in the event of a real crash. Conversely, a high
# threshold generates fewer mistakes but needs more time to detect
# actual crashes.
threshold = 8.0
# Number of the samples of inter-heartbeat arrival times to adaptively
# calculate the failure timeout for connections.
max-sample-size = 1000
# Minimum standard deviation to use for the normal distribution in
# AccrualFailureDetector. Too low standard deviation might result in
# too much sensitivity for sudden, but normal, deviations in heartbeat
# inter arrival times.
min-std-deviation = 100 ms
# Number of potentially lost/delayed heartbeats that will be
# accepted before considering it to be an anomaly.
# This margin is important to be able to survive sudden, occasional,
# pauses in heartbeat arrivals, due to for example garbage collect or
# network drop.
acceptable-heartbeat-pause = 3 s
# Number of member nodes that each member will send heartbeat messages to,
# i.e. each node will be monitored by this number of other nodes.
monitored-by-nr-of-members = 9
# After the heartbeat request has been sent the first failure detection
# will start after this period, even though no heartbeat mesage has
# been received.
expected-response-after = 1 s
}
Bump the acceptable-heartbeat-pause = 3 s value to something larger like 10,20,30 if needed.
Sharding Configuration
One last thing I want to point out with your code - the shard count is way too high. You should have about ~10 shards per node. Reduce it to something reasonable.

Inconsistent behavior of Quartz2 scheduler in Apache Camel

I have an Apache Camel project that is using Quartz2 as the scheduler. The requirement is to make it a cluster. The code is deployed to weblogic 12c. the quartz is configured as per many samples with clustering enabled.
This is my properties file (without the datasource)
org.quartz.scheduler.instanceName = MyScheduler
org.quartz.scheduler.instanceId = AUTO
org.quartz.scheduler.skipUpdateCheck = true
org.quartz.scheduler.jobFactory.class = org.quartz.simpl.SimpleJobFactory
org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 10
org.quartz.threadPool.threadPriority = 5
org.quartz.jobStore.misfireThreshold = 60000
org.quartz.jobStore.class=org.quartz.impl.jdbcjobstore.JobStoreTX
org.quartz.jobStore.driverDelegateClass=org.quartz.impl.jdbcjobstore.oracle.OracleDelegate
org.quartz.jobStore.useProperties=true
org.quartz.JobBuilder.requestRecovery=true
org.quartz.jobStore.isClustered = true
org.quartz.jobStore.clusterCheckinInterval = 20000
When I deploy and start both nodes I see that the QRTZ_SCHEDULER_STATE table has extra entry for one of the nodes:
MyScheduler-routerContext server_node21567108546690
MyScheduler-routerContext-1 server_node11565896495100
MyScheduler-routerContext-1 server_node11567108547295
And I am guessing because of that the one node is being called once in a while while the other node gets called all the time (so occasionally both nodes are invoked at the same time).
I have tried to do a clean restart of weblogic nodes but the issue is still there
This is how my route(s) look like:
from("quartz2://provRegGroup/createUsersTrigger?cron={{create_users_cron}}&job.name=createUsersJob")
.routeId("createUsersRB")
.log("**** starting check for create users");
//where
//create_users_cron=0+0,5,10,15,20,25,30,35,40,45,50,55+*+*+*+?
//expecting one node being called by the scheduler at a time..
I figured out what caused the issue. apparently there were orphan weblogic processes that were running on one (or even both nodes) - this would be a question to our tech archs - why this was such a mess.. ps was showing two weblogic servers running on a node - one that I started recently and one that was there for say a month..
expecting this would never happen to production environment I assume the issue has been resolved..

Apache Ignite sql query returns only cache contents, not complete results from database

My Ignite nodes (2 server nodes - let's call them A and B) are configured as follows:
ccfg.setCacheMode(CacheMode.PARTITIONED);
ccfg.setAtomicityMode(CacheMode.TRANSACTIONAL);
ccfg.setReadThrough(true);
ccfg.setWriteThrough(true);
ccfg.setWriteBehindEnabled(true);
ccfg.setWriteBehindBatchSize(10000);
Node A is started first, from command line as follows:
apache-ignite-fabric-2.2.0-bin>bin/ignite.bat config/default-config.xml
Node B is started from java code by running
public static void main(String[] args) throws Exception {
Ignite ignite = Ignition.start(ServerConfigurationFactory.createConfiguration());
ignite.cache("MyCache").loadCache(null);
...
}
(jar containing ServerConfigurationFactory is put in the apache-ignite-fabric-2.2.0-bin\libs directory so Node A and B are on the same cluster..otherwise there is an error)
I have a query that is supposed to return 9061 results from the database. After the cache loading process in Node B, I went to the Web Console and ran a simple count SQL statement against the caches. There is a button "Execute on selected node" that allows you to choose a specific cache to query. I queried Node A and got a count of 2341, and on Node B I get a count of 2064. If I just use the "Execute" button I get 4405 which is just the total of node A and B. Obviously they are missing 4656 records (9061 total records in db - 4405 in nodes A and B). I also ran the same count query in Java code using SqlFieldsQuery and I also get 4405.
Since readThrough is set to true I expected Ignite to also return results that are not in memory. But this is not the case because it just returns whatever is on the cache. Am I doing something wrong here? Thank you.
Read though works only for key-value APIs, so SQL engine assumes that all required data is preloaded from database prior to running a query.
If your data set doesn't fit in memory and you can't preload all the data, you can use native Ignite persistence storage: https://apacheignite.readme.io/docs/distributed-persistent-store

Apache Ignite - Distibuted Queue and Executors

I am planning to use Apache Ignite Distributed Queue.
I am using Ignite with a spring boot application. So, on bootup, I will be adding 20 names in a queue. But, since there are 3 servers in a cluster, the same 20 names gets added 3 times. But, i want to add them only once in the queue.
Ignite ignite = Ignition.ignite();
IgniteQueue<String> queue = ignite.queue(
"queueName", // Queue name.
0, // Queue capacity. 0 for unbounded queue.
null // Collection configuration.
);
Distributed executors, will be able to poll from the queue and run the task. Here, the executor is expected to poll, run the task and then add the same name to the queue. Trying to achieve round robin here.
Only one executor should be running the same task at any point of time, though there are multiple servers in a cluster.
Any suggestion for this.
You can launch ignite cluster singleton service https://apacheignite.readme.io/docs/cluster-singletons which will fill data to queue. Also you can adding data from coordinator node (oldest node in cluster) ignite.cluster().forOldest().node().isLocal()
I fixed bootup time duplicate cache loading issue this way:
final IgniteAtomicLong cacheLoadCnt = ignite.atomicLong(cacheName + "Cnt", 0, true);
if (cacheLoadCnt.get() == 0) {
loadCache();
cacheLoadCnt.addAndGet(1);
}