How to declare constraints with variable as array index in Z3Py? - variables

Suppose x,y,z are int variables and A is a matrix, I want to express a constraint like:
z == A[x][y]
However this leads to an error:
TypeError: object cannot be interpreted as an index
What would be the correct way to do this?
=======================
A specific example:
I want to select 2 items with the best combination score,
where the score is given by the value of each item and a bonus on the selection pair.
For example,
for 3 items: a, b, c with related value [1,2,1], and the bonus on pairs (a,b) = 2, (a,c)=5, (b,c) = 3, the best selection is (a,c), because it has the highest score: 1 + 1 + 5 = 7.
My question is how to represent the constraint of selection bonus.
Suppose CHOICE[0] and CHOICE[1] are the selection variables and B is the bonus variable.
The ideal constraint should be:
B = bonus[CHOICE[0]][CHOICE[1]]
but it results in TypeError: object cannot be interpreted as an index
I know another way is to use a nested for to instantiate first the CHOICE, then represent B, but this is really inefficient for large quantity of data.
Could any expert suggest me a better solution please?
If someone wants to play a toy example, here's the code:
from z3 import *
items = [0,1,2]
value = [1,2,1]
bonus = [[1,2,5],
[2,1,3],
[5,3,1]]
choices = [0,1]
# selection score
SCORE = [ Int('SCORE_%s' % i) for i in choices ]
# bonus
B = Int('B')
# final score
metric = Int('metric')
# selection variable
CHOICE = [ Int('CHOICE_%s' % i) for i in choices ]
# variable domain
domain_choice = [ And(0 <= CHOICE[i], CHOICE[i] < len(items)) for i in choices ]
# selection implication
constraint_sel = []
for c in choices:
for i in items:
constraint_sel += [Implies(CHOICE[c] == i, SCORE[c] == value[i])]
# choice not the same
constraint_neq = [CHOICE[0] != CHOICE[1]]
# bonus constraint. uncomment it to see the issue
# constraint_b = [B == bonus[val(CHOICE[0])][val(CHOICE[1])]]
# metric definition
constraint_sumscore = [metric == sum([SCORE[i] for i in choices ]) + B]
constraints = constraint_sumscore + constraint_sel + domain_choice + constraint_neq + constraint_b
opt = Optimize()
opt.add(constraints)
opt.maximize(metric)
s = []
if opt.check() == sat:
m = opt.model()
print [ m.evaluate(CHOICE[i]) for i in choices ]
print m.evaluate(metric)
else:
print "failed to solve"

Turns out the best way to deal with this problem is to actually not use arrays at all, but simply create integer variables. With this method, the 317x317 item problem originally posted actually gets solved in about 40 seconds on my relatively old computer:
[ 0.01s] Data loaded
[ 2.06s] Variables defined
[37.90s] Constraints added
[38.95s] Solved:
c0 = 19
c1 = 99
maxVal = 27
Note that the actual "solution" is found in about a second! But adding all the required constraints takes the bulk of the 40 seconds spent. Here's the encoding:
from z3 import *
import sys
import json
import sys
import time
start = time.time()
def tprint(s):
global start
now = time.time()
etime = now - start
print "[%ss] %s" % ('{0:5.2f}'.format(etime), s)
# load data
with open('data.json') as data_file:
dic = json.load(data_file)
tprint("Data loaded")
items = dic['items']
valueVals = dic['value']
bonusVals = dic['bonusVals']
vals = [[Int("val_%d_%d" % (i, j)) for j in items if j > i] for i in items]
tprint("Variables defined")
opt = Optimize()
for i in items:
for j in items:
if j > i:
opt.add(vals[i][j-i-1] == valueVals[i] + valueVals[j] + bonusVals[i][j])
c0, c1 = Ints('c0 c1')
maxVal = Int('maxVal')
opt.add(Or([Or([And(c0 == i, c1 == j, maxVal == vals[i][j-i-1]) for j in items if j > i]) for i in items]))
tprint("Constraints added")
opt.maximize(maxVal)
r = opt.check ()
if r == unsat or r == unknown:
raise Z3Exception("Failed")
tprint("Solved:")
m = opt.model()
print " c0 = %s" % m[c0]
print " c1 = %s" % m[c1]
print " maxVal = %s" % m[maxVal]
I think this is as fast as it'll get with Z3 for this problem. Of course, if you want to maximize multiple metrics, then you can probably structure the code so that you can reuse most of the constraints, thus amortizing the cost of constructing the model just once, and incrementally optimizing afterwards for optimal performance.

Related

Z3 ArithRef type: is there a way to show value once model evaluated?

Using Z3Py, once a model has been checked for an optimization problem, is there a way to convert ArithRef expressions into values?
Such as
y = If(x > 5, 0, 0.5 * x)
Once values have been found for x, can I get the evaluated value for y, without having to calculate again based on the given values for x?
Many thanks.
You need to evaluate, but it can be done by the model for you automatically:
from z3 import *
x = Real('x')
y = If(x > 5, 0, 0.5 * x)
s = Solver()
r = s.check()
if r == sat:
m = s.model();
print("x =", m.eval(x, model_completion=True))
print("y =", m.eval(y, model_completion=True))
else:
print("Solver said:", r)
This prints:
x = 0
y = 0
Note that we used the parameter model_completion=True since there are no constraints to force x (and consequently y) to any value in this model. If you have sufficient constraints added, you wouldn't need that parameter. (Of course, having it does not hurt.)

Pulp solves multiple combinatorial problems

As the title says,
I want to solve a problem similar to the summation of multiple schemes into a fixed constant, However, when I suggest the constrained optimization model, I can't get all the basic schemes well. Part of the opinion is to add a constraint when I get a solution. However, the added constraint leads to incomplete solution and no addition leads to a dead cycle.
Here is my problem description
I have a list of benchmark data detail_list ,My goal is to select several numbers from the benchmark data list(detail_list), but not all of them, so that the sum of these data can reach the sum of the number(plan_amount) I want.
For Examle
detail_list = [50, 100, 80, 40, 120, 25],
plan_amount = 20,
The feasible schemes are:
detail_list[2]=20 can be satisfied, detail_list[1](noly 10) + detail_list[3](only 10) = plan_amount(20) , detail_list[1](only 5) + detail_list[3](only 15) = plan_amount(20) also can be satisfied, and detail_list1 + detail_list2 + detail_list3 = plan_amount(20). But you can't take four elements in the detail_list are combined, because number = 3, indicating that a maximum of three elements are allowed to be combined.
from pulp import *
num = 6 # the list max length
number_max = 3 # How many combinations can there be at most
plan_amount = 20
detail_list = [50, 100, 80, 40, 120, 25] # Basic data
plan_model = LpProblem("plan_model")
alpha = [LpVariable("alpha_{0}".format(i+1), cat="Binary") for i in range(num)]
upBound_num = [int(detail_list_money) for detail_list_money in detail_list]
num_channel = [
LpVariable("fin_money_{0}".format(i+1), lowBound=0, upBound=upBound_num[i], cat="Integer") for i
in range(num)]
plan_model += lpSum(num_channel) == plan_amount
plan_model += lpSum(alpha) <= number_max
for i in range(num):
plan_model += num_channel[i] >= alpha[i] * 5
plan_model += num_channel[i] <= alpha[i] * detail_list[i]
plan_model.writeLP("2222.lp")
test_dd = open("2222.txt", "w", encoding="utf-8")
i = 0
while True:
plan_model.solve()
if LpStatus[plan_model.status] == "Optimal":
test_dd.write(str(i + 1) + "times result\n")
for v in plan_model.variables():
test_dd.write(v.name + "=" + str(v.varValue))
test_dd.write("\n")
test_dd.write("============================\n\n")
alpha_0_num = 0
alpha_1_num = 0
for alpha_value in alpha:
if value(alpha_value) == 0:
alpha_0_num += 1
if value(alpha_value) == 1:
alpha_1_num += 1
plan_model += (lpSum(
alpha[k] for k in range(num) if value(alpha[k]) == 1)) <= alpha_1_num - 1
plan_model.writeLP("2222.lp")
i += 1
else:
break
test_dd.close()
I don't know how to change my constraints to achieve this goal. Can you help me

z3py: Symbolic expressions cannot be cast to concrete Boolean values

I'm having troubles to define the objective fucntion in a SMT problem with z3py.
Long story, short, I have to optimize the placing of smaller blocks inside a board that has fixed width but variable heigth.
I have an array of coordinates (represented by an array of integers of length 2) and a list of integers (representing the heigth of the block to place).
# [x,y] list of integer variables
P = [[Int("x_%s" % (i + 1)), Int("y_%s" % (i + 1))]
for i in range(blocks)]
y = [int(b) for a, b in data[2:]]
I defined the objective function like this:
obj= Int(max([P[i][1] + y[i] for i in range(blocks)]))
It calculates the max height of the board given the starting coordinate of the blocks and their heights.
I know it could be better, but I think the problem would be the same even with a different definition.
Anyway, if I run my code, the following error occurs on the line of the objective function:
" raise Z3Exception("Symbolic expressions cannot be cast to concrete Boolean values.") "
While debugging I've seen that is P[i][1] that gives an error and I think it's because the program reads "y_i + 3" (for example) and they can't be added togheter.
Point is: it's obvious that the objective function depends on the variables of the problem, so how can I get rid of this error? Is there another place where I should define the objective function so it waits to have the P array instantiated before doing anything?
Full code:
from z3 import *
from math import ceil
width = 8
blocks = 4
x = [3,3,5,5]
y = [3,5,3,5]
height = ceil(sum([x[i] * y[i] for i in range(blocks)]) / width) + 1
# [blocks x 2] list of integer variables
P = [[Int("x_%s" % (i + 1)), Int("y_%s" % (i + 1))]
for i in range(blocks)]
# value/ domain constraint
values = [And(0 <= P[i][0], P[i][0] <= width - 1, 0 <= P[i][1], P[i][1] <= height - 1)
for i in range(blocks)]
obj = Int(max([P[i][1] + y[i] for i in range(blocks)]))
board_problem = values # other constraints I've not included for brevity
o = Optimize()
o.add(board_problem)
o.minimize(obj)
if (o.check == 'unsat'):
print("The problem is unsatisfiable")
else:
print("Solved")
The problem here is that you're calling Python's max on symbolic values, which is not designed to work for symbolic expressions. Instead, define a symbolic version of max and use that:
# Return maximum of a vector; error if empty
def symMax(vs):
m = vs[0]
for v in vs[1:]:
m = If(v > m, v, m)
return m
obj = symMax([P[i][1] + y[i] for i in range(blocks)])
With this change your program will go through and print Solved when run.

How to propagate `\n` to sympy.latex()

The Goal is to format a polynomial with more than 6 parameters into a plot title.
Here is my polynomial parameter to string expression function, inspired by this answer, followed by sym.latex():
def func(p_list):
str_expr = ""
for i in range(len(p_list)-1,-1,-1):
if (i%2 == 0 and i !=len(p_list)):
str_expr =str_expr + " \n "
if p_list[i]>0:
sign = " +"
else:
sign = ""
if i > 1:
str_expr = str_expr+" + %s*x**%s"%(p_list[i],i)
if i == 1:
str_expr = str_expr+" + %s*x"%(p_list[i])
if i == 0:
str_expr = str_expr+sign+" %s"%(p_list[i])
print("str_expr",str_expr)
return sym.sympify(str_expr)
popt = [-2,1,1] # some toy data
tex = sym.latex(func(popt))
print("tex",tex)
Outputs:
str_expr
+ -1*x**2 + 1*x
-2
tex - x^{2} + x - 2
in str_expr the line breaks from \n are visible, yet in the sympy.latex output the are gone.
How to propagate this linebreak?
Edit: I took # wsdookadr answer and modified it, so that plt.title takes the result of the function as text the argument
def tex_multiline_poly(e, chunk_size=2, separator="\n"):
tex = ""
# split into monomials
print("reversed(e.args)",reversed(e.args))
mono = list(e.args)
print("mono",mono)
mono.reverse()
print("mono",mono)
# we're going split the list of monomials into chunks of chunk_size
# serialize each chunk, and insert separators between the chunks
for i in range(0,len(mono),chunk_size):
chunk = mono[i:i + chunk_size]
print("sum(chunk)",sum(chunk))
print("sym.latex(sum(chunk))",sym.latex(sum(chunk)))
if i == 0:
tex += r'$f(x)= %s$'%(sym.latex(sum(chunk)))+separator
else:
tex += '$%s$'%(sym.latex(sum(chunk))) + separator
return tex
popt = est.params
x = sym.symbols('x')
p = sym.Poly.from_list(reversed(popt),gens=x)
tex = tex_multiline_poly(p.as_expr(),chunk_size=2)
plt.title(text=tex)
In your code, you're inserting a linebreak for every even-power monomial, except for the last one.
if (i%2 == 0 and i !=len(p_list)):
str_expr =str_expr + " \n "
Since you are just building a polynomial from a list of coefficients, your code can be simplified.
Generally what we want is to build/transform/handle things symbolically, and only at the end serialize them and print the result in some specific format
import sympy as sym
x = sym.symbols('x')
def func(p_list):
expr = 0
for i in range(len(p_list)-1,-1,-1):
expr += p_list[i] * (x ** i)
return sym.sympify(expr)
popt = [-2,1,1]
p = func(popt)
p_tex = sym.latex(p)
p_str = str(p)
print("str:", p_str)
print("tex:", p_tex)
Output:
str: x**2 + x - 2
tex: x^{2} + x - 2
We could simplify this even further by using SymPy's built-in functions to build the poly from a list of coefficients:
import sympy as sym
from sympy import symbols
popt = [-2,1,1]
x = symbols('x')
p = sym.Poly.from_list(reversed(popt),gens=x)
p_tex = sym.latex(p.as_expr())
p_str = str(p.as_expr())
print("str:", p_str)
print("tex:", p_tex)
Output:
str: x**2 + x - 2
tex: x^{2} + x - 2
Does the output look like what you would expect?
UPDATE:
After learning more about the use-case, here's a version that inserts separators every N=2 monomials in the latex form of your expression.
import sympy as sym
from sympy import symbols
popt = [-2,1,1]
x = symbols('x')
p = sym.Poly.from_list(reversed(popt),gens=x)
def tex_multiline_poly(e, chunk_size=2, separator="\n"):
tex = ""
# split into monomials
mono = list(reversed(e.args))
# we're going split the list of monomials into chunks of chunk_size
# serialize each chunk, and insert separators between the chunks
for i in range(0,len(mono),chunk_size):
chunk = mono[i:i + chunk_size]
tex += sym.latex(sum(chunk)) + separator
return tex
p_tex = tex_multiline_poly(p.as_expr(),chunk_size=2)
p_str = str(p.as_expr())
print("str:",p_str)
print("tex:",p_tex)
Output:
str: x**2 + x - 2
tex: x^{2} + x
-2
Edit: wrong edit

How to fix "submatrix incorrectly defined" in Scilab?

I am trying to find three parameters (a, b, c) to fit my experimental data using ODE solver and optimization by least squares using Scilab in-built functions.
However, I keep having the message "submatrix incorrectly defined" at line "y_exp(:,1) = [0.135 ..."
When I try another series of data (t, yexp) such as the one used in the original template I get no error messages. The template I use was found here: https://wiki.scilab.org/Non%20linear%20optimization%20for%20parameter%20fitting%20example
function dy = myModel ( t , y , a , b, c )
// The right-hand side of the Ordinary Differential Equation.
dy(1) = -a*y(1) - b*y(1)*y(2)
dy(2) = a*y(1) - b*y(1)*y(2) - c*y(2)
endfunction
function f = myDifferences ( k )
// Returns the difference between the simulated differential
// equation and the experimental data.
global MYDATA
t = MYDATA.t
y_exp = MYDATA.y_exp
a = k(1)
b = k(2)
c = k(3)
y0 = y_exp(1,:)
t0 = 0
y_calc=ode(y0',t0,t,list(myModel,a,b,c))
diffmat = y_calc' - y_exp
// Make a column vector
f = diffmat(:)
MYDATA.funeval = MYDATA.funeval+ 1
endfunction
// Experimental data
t = [0,20,30,45,75,105,135,180,240]';
y_exp(:,1) =
[0.135,0.0924,0.067,0.0527,0.0363,0.02445,0.01668,0.012,0.009]';
y_exp(:,2) =
[0,0.00918,0.0132,0.01835,0.0261,0.03215,0.0366,0.0393,0.0401]';
// Store data for future use
global MYDATA;
MYDATA.t = t;
MYDATA.y_exp = y_exp;
MYDATA.funeval = 0;
function val = L_Squares ( k )
// Computes the sum of squares of the differences.
f = myDifferences ( k )
val = sum(f.^2)
endfunction
// Initial guess
a = 0;
b = 0;
c = 0;
x0 = [a;b;c];
[fopt ,xopt]=leastsq(myDifferences, x0)
Does anyone know how to approach this problem?
Just rewrite lines 28,29 as
y_exp = [0.135,0.0924,0.067,0.0527,0.0363,0.02445,0.01668,0.012,0.009
0,0.00918,0.0132,0.01835,0.0261,0.03215,0.0366,0.0393,0.0401]';
or insert a clear at line 1 (you may have defined y_exp before with a different size).