Related
I have an idea for a tensor operation that would not be difficult to implement via iteration, with batch size one. However I would like to parallelize it as much as possible.
I have two tensors with shape (n, 5) called X and Y. X is actually supposed to represent 5 one-dimensional tensors with shape (n, 1): (x_1, ..., x_n). Ditto for Y.
I would like to compute a tensor with shape (n, 25) where each column represents the output of the tensor operation f(x_i, y_j), where f is fixed for all 1 <= i, j <= 5. The operation f has output shape (n, 1), just like x_i and y_i.
I feel it is important to clarify that f is essentially a fully-connected layer from the concatenated [...x_i, ...y_i] tensor with shape (1, 10), to an output layer with shape (1,5).
Again, it is easy to see how to do this manually with iteration and slicing. However this is probably very slow. Performing this operation in batches, where the tensors X, Y now have shape (n, 5, batch_size) is also desirable, particularly for mini-batch gradient descent.
It is difficult to really articulate here why I desire to create this network; I feel it is suited for my domain of 'itemized tabular data' and cuts down significantly on the number of weights per operation, compared to a fully connected network.
Is this possible using tensorflow? Certainly not using just keras.
Below is an example in numpy per AloneTogether's request
import numpy as np
features = 16
batch_size = 256
X_batch = np.random.random((features, 5, batch_size))
Y_batch = np.random.random((features, 5, batch_size))
# one tensor operation to reduce weights in this custom 'layer'
f = np.random.random((features, 2 * features))
for b in range(batch_size):
X = X_batch[:, :, b]
Y = Y_batch[:, :, b]
for i in range(5):
x_i = X[:, i:i+1]
for j in range(5):
y_j = Y[:, j:j+1]
x_i_y_j = np.concatenate([x_i, y_j], axis=0)
# f(x_i, y_j)
# implemented by a fully-connected layer
f_i_j = np.matmul(f, x_i_y_j)
All operations you need (concatenation and matrix multiplication) can be batched.
Difficult part here is, that you want to concatenate features of all items in X with features of all items in Y (all combinations).
My recommended solution is to expand the dimensions of X to [batch, features, 5, 1], expand dimensions of Y to [batch, features, 1, 5]
Than tf.repeat() both tensors so their shapes become [batch, features, 5, 5].
Now you can concatenate X and Y. You will have a tensor of shape [batch, 2*features, 5, 5]. Observe that this way all combinations are built.
Next step is matrix multiplication. tf.matmul() can also do batch matrix multiplication, but I use here tf.einsum() because I want more control over which dimensions are considered as batch.
Full code:
import tensorflow as tf
import numpy as np
batch_size=3
features=6
items=5
x = np.random.uniform(size=[batch_size,features,items])
y = np.random.uniform(size=[batch_size,features,items])
f = np.random.uniform(size=[2*features,features])
x_reps= tf.repeat(x[:,:,:,tf.newaxis], items, axis=3)
y_reps= tf.repeat(y[:,:,tf.newaxis,:], items, axis=2)
xy_conc = tf.concat([x_reps,y_reps], axis=1)
f_i_j = tf.einsum("bfij, fg->bgij", xy_conc,f)
f_i_j = tf.reshape(f_i_j , [batch_size,features,items*items])
I have N Gaussian distributions (multivariate) with N different means (covariance is the same for all of them) in D dimensions.
I also have N evaluation points, where I want to evaluate each of these (log) PDFs.
This means I need to get a NxN matrix, call it "kernels". That is, the (i,j)-th entry is the j-th Gaussian evaluated at the i-th point. A naive approach is:
from torch.distributions.multivariate_normal import MultivariateNormal
import numpy as np
# means contains all N means as rows and is thus N x D
# same for eval_points
# cov is not a problem , just a DxD matrix that is equal for all N Gaussians
kernels = np.empty((N,N))
for i in range(N):
for j in range(N):
kernels[i][j] = MultivariateNormal(means[j], cov).log_prob(eval_points[i])
Now one for loop we can get rid of easily, since for example if we wanted all the evaluations of the first Gaussian , we simply do:
MultivariateNormal(means[0], cov).log_prob(eval_points).squeeze()
and this gives us a N x 1 list of values, that is the first Gaussian evaluated at all N points.
My problem is that , in order to get the full N x N matrix , this doesn't work:
kernels = MultivariateNormal(means, cov).log_prob(eval_points).squeeze()
It doesn't figure out that it should evaluate each mean with all evaluation points in eval_points, and it doesn't return a NxN matrix with these which would be what I want. Therefore, I am not able to get rid of the second for loop, over all N Gaussians.
You are passing wrong shaped tensors to MultivariateNormal's constructor. You should pass a collection of mean vectors of shape (N, D) and a collection of precision matrix cov of shape (N, D, D) for N D-dimensional gaussian.
You are passing mu of shape (N, D) but your precision matrix is not well-shaped. You will need to repeat the precision matrix N number of times before passing it to the MultivariateNormal constructor. Here's one way to do it.
N = 10
D = 3
# means contains all N means as rows and is thus N x D
# same for eval_points
# cov is not a problem , just a DxD matrix that is equal for all N Gaussians
mu = torch.from_numpy(np.random.randn(N, D))
cov = torch.from_numpy(make_spd_matrix(D, D))
cov_n = cov[None, ...].repeat_interleave(N, 0)
assert cov_n.shape == (N, D, D)
kernels = MultivariateNormal(mu, cov_n)
I would like to whiten each image in a batch. The code I have to do so is this:
def whiten(self, x):
shape = x.shape
x = K.batch_flatten(x)
mn = K.mean(x, 0)
std = K.std(x, 0) + K.epsilon()
r = (x - mn) / std
r = K.reshape(x, (-1,shape[1],shape[2],shape[3]))
return r
#
where x is (?, 320,320,1). I am not keen on the reshape function with a -1 arg. Is there a cleaner way to do this?
Let's see what the -1 does. From the Tensorflow documentation (Because the documentation from Keras is scarce compared to the one from Tensorflow):
If one component of shape is the special value -1, the size of that dimension is computed so that the total size remains constant.
So what this means:
from keras import backend as K
X = tf.constant([1,2,3,4,5])
K.reshape(X, [-1, 5])
# Add one more dimension, the number of columns should be 5, and keep the number of elements to be constant
# [[1 2 3 4 5]]
X = tf.constant([1,2,3,4,5,6])
K.reshape(X, [-1, 3])
# Add one more dimension, the number of columns should be 3
# For the number of elements to be constant the number of rows should be 2
# [[1 2 3]
# [4 5 6]]
I think it is simple enough. So what happens in your code:
# Let's assume we have 5 images, 320x320 with 3 channels
X = tf.ones((5, 320, 320, 3))
shape = X.shape
# Let's flat the tensor so we can perform the rest of the computation
flatten = K.batch_flatten(X)
# What this did is: Turn a nD tensor into a 2D tensor with same 0th dimension. (Taken from the documentation directly, let's see that below)
flatten.shape
# (5, 307200)
# So all the other elements were squeezed in 1 dimension while keeping the batch_size the same
# ...The rest of the stuff in your code is executed here...
# So we did all we wanted and now we want to revert the tensor in the shape it had previously
r = K.reshape(flatten, (-1, shape[1],shape[2],shape[3]))
r.shape
# (5, 320, 320, 3)
Besides, I can't think of a cleaner way to do what you want to do. If you ask me, your code is already clear enough.
Here's my problem. I have a tensor X and I want to set all negative values to zero. In numpy, I would do the following np.maximum(0, X). Is there any way to achieve the same effect in tensorflow? I tried tf.maximum(tf.fill(X.get_shape(), 0.0), X), but this throws ValueError: Cannot convert a partially known TensorShape to a Tensor: (?,).
PS. X is a 1-D tensor of shape (?,).
As it happens, your problem is exactly the same as computing the rectifier activation function, and TensorFlow has a built-in operator, tf.nn.relu(), that does exactly what you need:
X_with_negatives_set_to_zero = tf.nn.relu(X)
You can use tf.clip_by_value function as follows:
t = tf.clip_by_value(t, min_val, max_val)
It will clip tensor t in the range [min_val, max_val]. Here you can set min_val to 0 to clip all negative values and set those to 0. More documentation about clip_by_value.
A simple solution is to use the cast function keras documentation (as suggested by #ldavid)
X = tf.cast(X > 0, X.dtype) * X
Moreover this can be adapted to any threshold level with :
X = tf.cast(X > threshold, X.dtype) * X
One possible solution could be this (although it's not the best):
class TensorClass(object):
def __init__(tensor_values):
self.test_tensor = tf.Variable(tensor_values, name="test_tensor")
test_session = tf.Session()
with test_session.as_default():
tc = TensorClass([1, -1, 2, -2, 3])
test_session.run(tf.initialize_all_variables())
test_tensor_value = test_session.run(tc.test_tensor)
print(test_tensor_value) # Will print [1, -1, 2, -2, 3]
new_test_tensor_value = [element * int(element > 0) for element in test_tensor_value]
test_tensor_value_assign_op = tf.assign(tc.test_tensor, new_test_tensor_value)
test_session.run(test_tensor_value_assign_op)
test_tensor_value = test_session.run(tc.test_tensor)
print(test_tensor_value) # Will print [1 0 2 0 3]
While this does what you need, it's not done in tensorflow. We are pulling out a tensorflow variable, changing it, and putting it back again.
For performance critical things, don't use this because it's not very efficient.
Tensorflow has a function called batch_matmul which multiplies higher dimensional tensors. But I'm having a hard time understanding how it works, perhaps partially because I'm having a hard time visualizing it.
What I want to do is multiply a matrix by each slice of a 3D tensor, but I don't quite understand what the shape of tensor a is. Is z the innermost dimension? Which of the following is correct?
I would most prefer the first to be correct -- it's most intuitive to me and easy to see in the .eval() output. But I suspect the second is correct.
Tensorflow says that batch_matmul performs:
out[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])
What does that mean? What does that mean in the context of my example? What is being multiplied with with what? And why aren't I getting a 3D tensor the way I expected?
You can imagine it as doing a matmul over each training example in the batch.
For example, if you have two tensors with the following dimensions:
a.shape = [100, 2, 5]
b.shape = [100, 5, 2]
and you do a batch tf.matmul(a, b), your output will have the shape [100, 2, 2].
100 is your batch size, the other two dimensions are the dimensions of your data.
First of all tf.batch_matmul() was removed and no longer available. Now you suppose to use tf.matmul():
The inputs must be matrices (or tensors of rank > 2, representing
batches of matrices), with matching inner dimensions, possibly after
transposition.
So let's assume you have the following code:
import tensorflow as tf
batch_size, n, m, k = 10, 3, 5, 2
A = tf.Variable(tf.random_normal(shape=(batch_size, n, m)))
B = tf.Variable(tf.random_normal(shape=(batch_size, m, k)))
tf.matmul(A, B)
Now you will receive a tensor of the shape (batch_size, n, k). Here is what is going on here. Assume you have batch_size of matrices nxm and batch_size of matrices mxk. Now for each pair of them you calculate nxm X mxk which gives you an nxk matrix. You will have batch_size of them.
Notice that something like this is also valid:
A = tf.Variable(tf.random_normal(shape=(a, b, n, m)))
B = tf.Variable(tf.random_normal(shape=(a, b, m, k)))
tf.matmul(A, B)
and will give you a shape (a, b, n, k)
You can now do it using tf.einsum, starting from Tensorflow 0.11.0rc0.
For example,
M1 = tf.Variable(tf.random_normal([2,3,4]))
M2 = tf.Variable(tf.random_normal([5,4]))
N = tf.einsum('ijk,lk->ijl',M1,M2)
It multiplies the matrix M2 with every frame (3 frames) in every batch (2 batches) in M1.
The output is:
[array([[[ 0.80474716, -1.38590837, -0.3379252 , -1.24965811],
[ 2.57852983, 0.05492432, 0.23039417, -0.74263287],
[-2.42627382, 1.70774114, 1.19503212, 0.43006262]],
[[-1.04652011, -0.32753903, -1.26430523, 0.8810069 ],
[-0.48935518, 0.12831448, -1.30816901, -0.01271309],
[ 2.33260512, -1.22395933, -0.92082584, 0.48991606]]], dtype=float32),
array([[ 1.71076882, 0.79229093, -0.58058828, -0.23246667],
[ 0.20446332, 1.30742455, -0.07969904, 0.9247328 ],
[-0.32047141, 0.66072595, -1.12330854, 0.80426538],
[-0.02781649, -0.29672042, 2.17819595, -0.73862702],
[-0.99663496, 1.3840003 , -1.39621222, 0.77119476]], dtype=float32),
array([[[ 0.76539308, 2.77609682, -1.79906654, 0.57580602, -3.21205115],
[ 4.49365759, -0.10607499, -1.64613271, 0.96234947, -3.38823152],
[-3.59156275, 2.03910899, 0.90939498, 1.84612727, 3.44476724]],
[[-1.52062428, 0.27325237, 2.24773455, -3.27834225, 3.03435063],
[ 0.02695178, 0.16020992, 1.70085776, -2.8645196 , 2.48197317],
[ 3.44154787, -0.59687197, -0.12784094, -2.06931567, -2.35522676]]], dtype=float32)]
I have verified, the arithmetic is correct.
tf.tensordot should solve this problem. It supports batch operations, e.g., if you want to contract a 2D tensor with a 3D tensor, with the latter having a batch dimension.
If a is shape [n,m] b is shape [?,m,l], then
y = tf.tensordot(b, a, axes=[1, 1]) will produce a tensor of shape [?,n,l]
https://www.tensorflow.org/api_docs/python/tf/tensordot
It is simply like splitting on the first dimension respectively, multiply and concat them back. If you want to do 3D by 2D, you can reshape, multiply, and reshape it back. I.e. [100, 2, 5] -> [200, 5] -> [200, 2] -> [100, 2, 2]
The answer to this particular answer is using tf.scan function.
If a = [5,3,2] #dimension of 5 batch, with 3X2 mat in each batch
and b = [2,3] # a constant matrix to be multiplied with each sample
then let def fn(a,x):
return tf.matmul(x,b)
initializer = tf.Variable(tf.random_number(3,3))
h = tf.scan(fn,outputs,initializer)
this h will store all the outputs.