Ordering from tensorflow queues - tensorflow

I am trying to understand queues in better detail. Using the code below I expect that since I am not shuffling the alphabetic list the output collection will be in alphabetic order. This seems to be the case for all but the initial epoch. Am I misunderstanding something?
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import numpy as np
import string
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('num_epochs', 2, 'Number of epochs to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 100, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', '/tmp/data',
'Directory to put the training data.')
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
def run_training():
# Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
with tf.name_scope('input'):
# Input data
images_initializer = tf.placeholder(
dtype=tf.int64,
shape=[52,1])
input_images = tf.Variable(
images_initializer, trainable=False, collections=[])
image = tf.train.slice_input_producer(
[input_images], num_epochs=2)
images = tf.train.batch(
[image], batch_size=1)
alph_initializer = tf.placeholder(
dtype=tf.string,
shape=[26,1])
input_alph = tf.Variable(
alph_initializer, trainable=False, collections=[])
alph = tf.train.slice_input_producer(
[input_alph], shuffle=False, capacity=26)
alphs = tf.train.batch(
[alph], batch_size=1)
my_list = np.array(list(range(0,52))).reshape(52,1)
my_list_val = np.array(list(string.ascii_lowercase)).reshape(26,1)
# Create the op for initializing variables.
init_op = tf.initialize_all_variables()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Run the Op to initialize the variables.
sess.run(init_op)
sess.run(input_images.initializer,
feed_dict={images_initializer: my_list})
sess.run(input_alph.initializer,
feed_dict={alph_initializer: my_list_val})
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# And then after everything is built, start the training loop.
collection = []
try:
step = 0
while not coord.should_stop():
start_time = time.time()
# Run one step of the model.
integer = sess.run(image)
#print("Integer val", integer)
char = sess.run(alph)
collection.append(char[0][0])
print("String val", char)
duration = time.time() - start_time
except tf.errors.OutOfRangeError:
print('Saving')
print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
finally:
# When done, ask the threads to stop.
coord.request_stop()
print(str(collection))
# Wait for threads to finish.
coord.join(threads)
sess.close()
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()

Changing the above to the below clears up my confusion
try:
step = 0
while not coord.should_stop():
start_time = time.time()
# Run one step of the model.
integer = sess.run(images)
#print("Integer val", integer)
char = sess.run(alphs)
collection.append(char[0][0])
print("String val", char)
duration = time.time() - start_time
except tf.errors.OutOfRangeError:
print('Saving')
print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
finally:
# When done, ask the threads to stop.
coord.request_stop()
print(str(collection))

Related

L2 regularization keep increasing during training

I am finetuning InceptionResnetV2 on TensorFlow. When training, the regularization loss keep linearly increasing and even much larger than cross entropy loss in the later stage of training. I have checked the training procedure, and make sure I am optimizing the cross entropy loss and L2 loss combined.
Is there anyone explain this weird thing a little bit? Any feedback is appreciated.
Here is the code and some TensorBoard plots.
import tensorflow as tf
from tensorflow.python.platform import tf_logging as logging
from inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope
import os
import time
from preprocessing import aug_parallel_v2
import numpy as np
slim = tf.contrib.slim
# total training data number
sample_num = 625020
data_path = 'iNaturalist_train.tfrecords'
# State where your log file is at. If it doesn't exist, create it.
log_dir = './log_v5'
# tensorboard visualization path
filewriter_path = './filewriter_v5_Logits'
# State where your checkpoint file is
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
checkpoint_save_addr = './log_v5/fine-tuning_v5.ckpt'
# State the image size you're resizing your images to. We will use the default inception size of 299.
image_size = 299
# State the number of classes to predict:
num_classes = 8142
# ================= TRAINING INFORMATION ==================
# State the number of epochs to train
num_epochs = 5
# State your batch size
batch_size = 60
# Learning rate information and configuration
initial_learning_rate = 0.0005
learning_rate_decay_factor = 0.8
num_epochs_before_decay = 2
# put weight on different classes inversely proportional
# to total number of their image samples
label_count = np.loadtxt('label_count.txt', dtype=int)
inverse = lambda t: 1 / t
vfunc = np.vectorize(inverse)
multiplier = vfunc(label_count)
multiplier /= np.mean(multiplier)
def run():
if not os.path.exists(log_dir):
os.mkdir(log_dir)
feature = {'train/height': tf.FixedLenFeature([], tf.int64),
'train/width': tf.FixedLenFeature([], tf.int64),
'train/image': tf.FixedLenFeature([], tf.string),
'train/label': tf.FixedLenFeature([], tf.int64),
'train/sup_label': tf.FixedLenFeature([], tf.int64),
'train/aug_level': tf.FixedLenFeature([], tf.int64)}
# create a list of file names
filename_queue = tf.train.string_input_producer([data_path], num_epochs=None)
print(filename_queue)
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(filename_queue)
features = tf.parse_single_example(tfrecord_serialized, features=feature)
# Convert the image data from string back to the numbers
height = tf.cast(features['train/height'], tf.int64)
width = tf.cast(features['train/width'], tf.int64)
# change this line for your TFrecord version
tf_image = tf.image.decode_jpeg(features['train/image'])
tf_label = tf.cast(features['train/label'], tf.int32)
aug_level = tf.cast(features['train/aug_level'], tf.int32)
# tf_sup_label = tf.cast(features['train/sup_label'], tf.int64)
tf_image = tf.reshape(tf_image, tf.stack([height, width, 3]))
tf_label = tf.reshape(tf_label, [1])
aug_level = tf.reshape(aug_level, [1])
resized_image = tf.image.resize_images(images=tf_image, size=tf.constant([400, 400]), method=2)
resized_image = tf.cast(resized_image, tf.uint8)
tf_images, tf_labels, tf_aug = tf.train.shuffle_batch([resized_image, tf_label, aug_level], batch_size=batch_size,
capacity=2048, num_threads=16, allow_smaller_final_batch=False,
min_after_dequeue=256)
tf.logging.set_verbosity(tf.logging.INFO) # Set the verbosity to INFO level
IMAGE_HEIGHT = 299
IMAGE_WIDTH = 299
images = tf.placeholder(dtype=tf.float32, shape=[None, 299, 299, 3])
labels = tf.placeholder(dtype=tf.int32, shape=[None, 1])
weighted_level = tf.placeholder(dtype=tf.float32, shape=[None, 1])
# Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = int(sample_num / batch_size)
num_steps_per_epoch = num_batches_per_epoch # Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
# Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(images, num_classes=num_classes, is_training=True)
# Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude=exclude)
print("label test")
print(labels)
print(logits)
# Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = tf.squeeze(tf.one_hot(labels, num_classes), [1])
print(one_hot_labels)
print(logits)
weighted_onehot = tf.multiply(one_hot_labels, weighted_level)
# Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
digits_loss = tf.losses.softmax_cross_entropy(onehot_labels=weighted_onehot, logits=logits)
reg_loss = tf.losses.get_regularization_loss()
total_loss = digits_loss + reg_loss
# Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate=initial_learning_rate,
global_step=global_step,
decay_steps=decay_steps,
decay_rate=learning_rate_decay_factor,
staircase=True)
# train_vars = []
# Now we can define the optimizer that takes on the learning rate
train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
"InceptionResnetV2/Logits")
# RMSProp or Adam
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
# Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer, variables_to_train=train_vars)
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.metrics.accuracy(predictions, labels)
metrics_op = tf.group(accuracy_update, probabilities)
tf.summary.scalar('losses/Reg_Loss', reg_loss)
tf.summary.scalar('losses/Digit_Loss', digits_loss)
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
writer = tf.summary.FileWriter(filewriter_path)
writer.add_graph(tf.get_default_graph())
my_summary_op = tf.summary.merge_all()
def train_step(sess, train_op, global_step, imgs, lbls, weight):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed
for each global step
'''
# Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
time_elapsed = time.time() - start_time
# Run the logging to print some results
logging.info('global step %s: digit_loss: %.4f (%.2f sec/step)',
global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
saver_pretrain = tf.train.Saver(variables_to_restore)
saver_train = tf.train.Saver(train_vars)
with tf.Session() as sess:
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# Create a coordinator and run all QueueRunner objects
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
saver_pretrain.restore(sess, checkpoint_file)
start_time = time.time()
for step in range(int(num_steps_per_epoch * num_epochs)):
imgs, lbls, augs = sess.run([tf_images, tf_labels, tf_aug])
imgs, lbls = aug_parallel_v2(imgs, lbls, augs)
imgs = imgs[:, 50:349, 50:349, :]
imgs = 2*(imgs.astype(np.float32)) - 1
lbls = lbls.astype(np.int32)
weight = multiplier[lbls]
weight = np.array(weight).reshape((batch_size, 1))
# print(imgs[0, 0:10, 0:10, 0:2])
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step / num_batches_per_epoch + 1, num_epochs)
learning_rate_value, accuracy_value = sess.run([lr, accuracy],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
logging.info('Current Learning Rate: %s', learning_rate_value)
logging.info('Current Streaming Accuracy: %s', accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run(
[logits, probabilities, predictions, labels],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
print('logits: \n', logits_value)
print('Probabilities: \n', probabilities_value)
print('predictions: \n', predictions_value)
print('Labels:\n:', labels_value)
# Log the summaries every 10 step.
if step % 20 == 0:
loss, global_step_count = train_step(sess, train_op, global_step, imgs, lbls, weight)
summaries = sess.run(my_summary_op, feed_dict={images: imgs, labels: lbls, weighted_level: weight})
writer.add_summary(summaries, global_step_count)
# sess.summary_computed(sess, summaries)
# If not, simply run the training step
else:
loss, _ = train_step(sess, train_op, global_step, imgs, lbls, weight)
if step % 2000 == 0:
logging.info('Saving model to disk now.')
saver_train.save(sess, checkpoint_save_addr, global_step=global_step)
print('one batch time: ', time.time() - start_time)
start_time = time.time()
# We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
# Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
saver_train.save(sess, checkpoint_save_addr, global_step=global_step)
# Stop the threads
coord.request_stop()
# Wait for threads to stop
coord.join(threads)
sess.close()
if __name__ == '__main__':
run()
I am new here, and don't have enough reputation to post images.
Here are two links for the accuracy plot and losses plot. You can easily tell the regularization loss is in a dominant position.
This is a difficult question to answer. I can give some pointers though.
In general, when you try to minimize digits_loss, that is to fit your model to your data, you will slowly change the weights in your layers. To counter potential overfitting, a L2 regularization loss (the sum of the squares of all weights, reg_loss in your code) is generally added to the overall loss (total_loss in your code.) These two forces generally act against each other and if the balance is right, you train a good model.
In your case you're taking a network (resnet_v2) that was developed for 1,001 classes and try to predict 8,142 classes. No problem with that per se, but you're upsetting the balance. So I believe you need to override the default weight decay of 0.00004 for resnet v2 to some higher value, in this line (note only 3 zeros in the decimals for a 10x increase):
with slim.arg_scope( inception_resnet_v2_arg_scope( weight_decay = 0.0004 ) ):
A higher weight_decay parameter will force the L2 loss to decrease faster. The problem is that this number is just a guess, I have no idea what an ideal value would be. You need to experiment with multiple values and figure it out.

Cannot load int variable from previous session in tensorflow 1.1

I have read many similar questions and just cannot get this to work properly.
I have my model being trained well and checkpoint files are being made every epoch. I want to have it so the program can continue from epoch x once reloaded and also for it to print that is on that epoch with every iteration. I could simply save the data outside of the checkpoint file, however I was also wanting to do this to give me confidence everything else is also being stored properly.
Unfortunately the value in the epoch/global_step variable is always still 0 when I restart.
import tensorflow as tf
import numpy as np
import tensorflow as tf
import numpy as np
# more imports
def extract_number(f): # used to get latest checkpint file
s = re.findall("epoch(\d+).ckpt",f)
return (int(s[0]) if s else -1,f)
def restore(init_op, sess, saver): # called to restore or just initialise model
list = glob(os.path.join("./params/e*"))
if list:
file = max(list,key=extract_number)
saver.restore(sess, file[:-5])
sess.run(init_op)
return
with tf.Graph().as_default() as g:
# build models
total_batch = data.train.num_examples / batch_size
epochLimit = 51
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
restore(init_op, sess, saver)
epoch = global_step.eval()
while epoch < epochLimit:
total_batch = data.train.num_examples / batch_size
for i in range(int(total_batch)):
sys.stdout.flush()
voxels = newData.eval()
batch_z = np.random.uniform(-1, 1, [batch_size, z_size]).astype(np.float32)
sess.run(opt_G, feed_dict={z:batch_z, train:True})
sess.run(opt_D, feed_dict={input:voxels, z:batch_z, train:True})
with open("out/loss.csv", 'a') as f:
batch_loss_G = sess.run(loss_G, feed_dict={z:batch_z, train:False})
batch_loss_D = sess.run(loss_D, feed_dict={input:voxels, z:batch_z, train:False})
msgOut = "Epoch: [{0}], i: [{1}], G_Loss[{2:.8f}], D_Loss[{3:.8f}]".format(epoch, i, batch_loss_G, batch_loss_D)
print(msgOut)
epoch=epoch+1
sess.run(global_step.assign(epoch))
saver.save(sess, "params/epoch{0}.ckpt".format(epoch))
batch_z = np.random.uniform(-1, 1, [batch_size, z_size]).astype(np.float32)
voxels = sess.run(x_, feed_dict={z:batch_z})
v = voxels[0].reshape([32, 32, 32]) > 0
util.save_binvox(v, "out/epoch{0}.vox".format(epoch), 32)
I also update the global step variable using assign at the bottom. Any ideas? Any help would be greatly appreciated.
When you call sess.run(init_op) after restoring this resets all variables to their initial values. Comment that line out and things should work.
My original code was wrong for several reasons because I was trying so many things. The first responder Alexandre Passos gives a valid point, but I believe what changed the game was also the use of scopes (maybe?).
Below is the working updated code if it helps anyone:
import tensorflow as tf
import numpy as np
# more imports
def extract_number(f): # used to get latest checkpint file
s = re.findall("epoch(\d+).ckpt",f)
return (int(s[0]) if s else -1,f)
def restore(sess, saver): # called to restore or just initialise model
list = glob(os.path.join("./params/e*"))
if list:
file = max(list,key=extract_number)
saver.restore(sess, file[:-5])
return saver, True, sess
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
sess.run(init_op)
return saver, False , sess
batch_size = 100
learning_rate = 0.0001
beta1 = 0.5
z_size = 100
save_interval = 1
data = dataset.read()
total_batch = data.train.num_examples / batch_size
def fill_queue():
for i in range(int(total_batch*epochLimit)):
sess.run(enqueue_op, feed_dict={batch: data.train.next_batch(batch_size)}) # runnig in seperate thread to feed a FIFOqueue
with tf.variable_scope("glob"):
global_step = tf.get_variable(name='global_step', initializer=0,trainable=False)
# build models
epochLimit = 51
saver = tf.train.Saver()
with tf.Session() as sess:
saver,rstr,sess = restore(sess, saver)
with tf.variable_scope("glob", reuse=True):
epocht = tf.get_variable(name='global_step', trainable=False, dtype=tf.int32)
epoch = epocht.eval()
while epoch < epochLimit:
total_batch = data.train.num_examples / batch_size
for i in range(int(total_batch)):
sys.stdout.flush()
voxels = newData.eval()
batch_z = np.random.uniform(-1, 1, [batch_size, z_size]).astype(np.float32)
sess.run(opt_G, feed_dict={z:batch_z, train:True})
sess.run(opt_D, feed_dict={input:voxels, z:batch_z, train:True})
with open("out/loss.csv", 'a') as f:
batch_loss_G = sess.run(loss_G, feed_dict={z:batch_z, train:False})
batch_loss_D = sess.run(loss_D, feed_dict={input:voxels, z:batch_z, train:False})
msgOut = "Epoch: [{0}], i: [{1}], G_Loss[{2:.8f}], D_Loss[{3:.8f}]".format(epoch, i, batch_loss_G, batch_loss_D)
print(msgOut)
epoch=epoch+1
sess.run(global_step.assign(epoch))
saver.save(sess, "params/epoch{0}.ckpt".format(epoch))
batch_z = np.random.uniform(-1, 1, [batch_size, z_size]).astype(np.float32)
voxels = sess.run(x_, feed_dict={z:batch_z})
v = voxels[0].reshape([32, 32, 32]) > 0
util.save_binvox(v, "out/epoch{0}.vox".format(epoch), 32)

What the meaning of the plot of tensorboard when using Queues?

I use tensorboard to monitor my training process and the plot are so good, but there are some plots that confuse me.
First Using_Queues_Lib.py:(it Using Queues and MultiThreads to read binary data,reference cifar 10 example)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
REAL32_BYTES=4
def read_dataset(filename_queue,data_length,label_length):
class Record(object):
pass
result = Record()
result_data = data_length*REAL32_BYTES
result_label = label_length*REAL32_BYTES
record_bytes = result_data + result_label
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue)
record_bytes = tf.decode_raw(value, tf.float32)
result.data = tf.strided_slice(record_bytes, [0],[data_length])#record_bytes: tf.float list
result.label = tf.strided_slice(record_bytes, [data_length],[data_length+label_length])
return result
def _generate_data_and_label_batch(data, label, min_queue_examples,batch_size, shuffle):
num_preprocess_threads = 16 #only speed code
if shuffle:
data_batch, label_batch = tf.train.shuffle_batch([data, label],batch_size=batch_size,num_threads=num_preprocess_threads,capacity=min_queue_examples + batch_size,min_after_dequeue=min_queue_examples)
else:
data_batch, label_batch = tf.train.batch([data, label],batch_size=batch_size,num_threads=num_preprocess_threads,capacity=min_queue_examples + batch_size)
return data_batch, label_batch
def inputs(data_dir, batch_size,data_length,label_length):
filenames = [os.path.join(data_dir, 'test_data_SE.dat')]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
filename_queue = tf.train.string_input_producer(filenames)
read_input = read_dataset(filename_queue,data_length,label_length)
read_input.data.set_shape([data_length]) #important
read_input.label.set_shape([label_length]) #important
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
min_fraction_of_examples_in_queue)
print ('Filling queue with %d samples before starting to train. '
'This will take a few minutes.' % min_queue_examples)
return _generate_data_and_label_batch(read_input.data, read_input.label,
min_queue_examples, batch_size,
shuffle=True)
In the main function, I write:
data_train,labels_train=Using_Queues_Lib.inputs(
filenames=r'./training.dat',
batch_size=32,
data_length=2,
label_length=1,
name='Training')
data_validate,labels_validate=Using_Queues_Lib.inputs(
filenames=r'./validating.dat',
batch_size=32*30,
data_length=2,
label_length=1,
name='Validating')
And the summary part is:
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.square(y_ - y))
loss_summary=tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
global_step=tf.Variable(0,trainable=False)
learning_rate=...
tf.summary.scalar('learning_rate', learning_rate)
train_step =tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
sess=tf.InteractiveSession(config=config)
summary_op = tf.summary.merge_all()
summaries_dir = './logs'
train_writer = tf.summary.FileWriter(summaries_dir + '/train', sess.graph)
validate_writer = tf.summary.FileWriter(summaries_dir + '/validate')
tf.global_variables_initializer().run()
tf.train.start_queue_runners()
for epoch in xrange(TRAINING_EPOCHS):
BatchNum_Per_Epoch=TRAINING_DATA_SAMPLES_LENGTH/BATCH_SIZE
for i in xrange(BatchNum_Per_Epoch):
data_batch,label_batch=sess.run([data_train,labels_train])
summary, _=sess.run([summary_op,train_step], feed_dict={x: data_batch, y_: label_batch})
train_writer.add_summary(summary, sess.run(global_step))
data_batch_validate,label_batch_validate=
sess.run([data_validate,labels_validate])
summary, loss_value_validate=sess.run([loss_summary,loss],
feed_dict={x: data_batch_validate, y_: label_batch_validate})
validate_writer.add_summary(summary, sess.run(global_step))
In the tensorboard I see this but I don't know what it means.
First:
Second:
You didn’t post the source code that shows the summary part, but from the graph I think you are plotting the fraction of num_elements_in_the_queue/capacity_of_the_queue at each summary step (the light color vertical lines are the data points, while the darker orange color is the smoothed average).

My tensorboard events appear many charts I did not summary

I only summary my loss as 'xentropy_mean' in training() ,but in tensorboard ,I had not find the 'xentropy_mean' chart but many other charts I did not defined. I don't know where I wrote wrong, and what's the matter indeed. Is it because I use thread in my code? If I don't use thread, how should I wrote it?
The tensorboard screenshot
There are 6 charts under the queue,I don't know what are the meanings either
I create the model in the file below
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow.python.platform
import tensorflow as tf
# The MNIST dataset has 10 classes, representing the digits 0 through 9.
NUM_CLASSES = 16
# The MNIST images are always 28x28 pixels.
IMAGE_SIZE = 28
IMAGE_PIXELS = 784
def inference(images, hidden1_units, hidden2_units):
"""Build the MNIST model up to where it may be used for inference.
Args:
images: Images placeholder, from inputs().
hidden1_units: Size of the first hidden layer.
hidden2_units: Size of the second hidden layer.
Returns:
softmax_linear: Output tensor with the computed logits.
"""
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def loss(logits, labels):
batch_size = tf.size(labels)
#print('batch size %d' %(batch_size))
labels = tf.expand_dims(labels, 1)
indices = tf.expand_dims(tf.range(0, batch_size), 1)
concated = tf.concat(1, [indices, labels])
#print('Done2')
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([batch_size, 16]), 1.0, 0.0)
#print('Done1')
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
onehot_labels,
name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
tf.summary.scalar(loss.op.name, loss)
return loss
def training(loss, learning_rate):
optimizer=tf.train.GradientDescentOptimizer(learning_rate)
global_step=tf.Variable(0,name='global_step',trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
# Return the number of true entries.
return tf.reduce_sum(tf.cast(correct, tf.int32))
and train the model in this file:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import time
import numpy as np
import tensorflow as tf
import mnist
# Basic model parameters as external flags.
#FLAGS = None
# Constants used for dealing with the files, matches convert_to_records.
TRAIN_FILE = 'train.tfrecords'
VALIDATION_FILE = 'validation.tfrecords'
TEST_FILE='test.tfrecords'
flags = tf.app.flags
FLAGS = flags.FLAGS
#FLAGS = None
flags.DEFINE_string('train_dir', '/home/queenie/image2tfrecord/tfrecords-28-gray/', 'Directory to put the training data.')
flags.DEFINE_string('filename', 'train.tfrecords', 'Directory to put the training data.')
flags.DEFINE_integer('batch_size', 100, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_integer('num_epochs', None, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_integer('hidden1', 128,'balabala')
flags.DEFINE_integer('hidden2', 32,'balabala')
flags.DEFINE_integer('learning_rate', 0.01,'balabala')
flags.DEFINE_integer('max_steps', 50000,'balabala')
def placeholder_inputs(batch_size):
images_placeholder=tf.placeholder(tf.float32,shape=(batch_size,mnist.IMAGE_PIXELS))
labels_placeholder=tf.placeholder(tf.int32,shape=(batch_size))
return images_placeholder,labels_placeholder
def fill_feed_dict(images_feed,labels_feed,images_pl,labels_pl):
feed_dict={
images_pl:images_feed,
labels_pl:labels_feed,
}
return feed_dict
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
# Convert from a scalar string tensor (whose single string has
# length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
# [mnist.IMAGE_PIXELS].
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([mnist.IMAGE_PIXELS])
# OPTIONAL: Could reshape into a 28x28 image and apply distortions
# here. Since we are not applying any distortions in this
# example, and the next step expects the image to be flattened
# into a vector, we don't bother.
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
# Convert label from a scalar uint8 tensor to an int32 scalar.
label = tf.cast(features['label'], tf.int32)
return image, label
def do_eval(sess,eval_correct):
true_count=0
for step in xrange(FLAGS.batch_size):
#print(sess.run(eval_correct))
true_count+=sess.run(eval_correct)
precision=float(true_count)/FLAGS.batch_size/FLAGS.batch_size
print(' Num examples: %d Num correct: %d Precision # 1: %0.04f' %
(FLAGS.batch_size, true_count, precision))
return precision
def inputs(train, batch_size, num_epochs):
if not num_epochs: num_epochs = None
if train=='train':
filename=os.path.join(FLAGS.train_dir,TRAIN_FILE)
elif train=='validation':
filename=os.path.join(FLAGS.train_dir,VALIDATION_FILE)
else:
filename=os.path.join(FLAGS.train_dir,TEST_FILE)
# filename = os.path.join(FLAGS.train_dir,
# TRAIN_FILE if train else VALIDATION_FILE)
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=None)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=2,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
return images, sparse_labels
def run_training():
with tf.Graph().as_default():
# Build a Graph that computes predictions from the inference model.
images, labels = inputs(train='train', batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
images_valid,labels_valid=inputs(train='validation', batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
images_test,labels_test=inputs(train='test', batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
logits = mnist.inference(images,
FLAGS.hidden1,
FLAGS.hidden2)
# Add to the Graph the loss calculation.
valid_prediction=mnist.inference(images_valid,FLAGS.hidden1,FLAGS.hidden2)
test_prediction=mnist.inference(images_test,FLAGS.hidden1,FLAGS.hidden2)
loss = mnist.loss(logits, labels)
# Add to the Graph operations that train the model.
train_op = mnist.training(loss, FLAGS.learning_rate)
eval_correct=mnist.evaluation(logits,labels)
eval_correct_valid=mnist.evaluation(valid_prediction,labels_valid)
eval_correct_test=mnist.evaluation(test_prediction,labels_test)
summary_op=tf.merge_all_summaries()
# The op for initializing the variables.
init_op = tf.group(tf.initialize_all_variables(),
tf.initialize_local_variables())
saver = tf.train.Saver()
# Create a session for running operations in the Graph.
sess = tf.Session()
# Initialize the variables (the trained variables and the
# epoch counter).
sess.run(init_op)
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
step = 0
train_precision=0
validation_precision=0
test_precision=0
#while not coord.should_stop():
while not coord.should_stop():
start_time = time.time()
_, loss_value,images_see,labels_see = sess.run([train_op, loss,images,labels])
#print('run done')
duration = time.time() - start_time
# Print an overview fairly often.
if step % 100 == 0:
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
duration))
precision_tr=do_eval(sess,eval_correct)
summary_str=sess.run(summary_op)
summary_writer.add_summary(summary_str,step)
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
checkpoint_file = os.path.join(FLAGS.train_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step)
print('Train:')
do_eval(sess,eval_correct)
print('Validation:')
do_eval(sess,eval_correct_valid)
print('Test:')
do_eval(sess,eval_correct_test)
step += 1
except tf.errors.OutOfRangeError:
print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
finally:
# When done, ask the threads to stop.
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
sess.close()
run_training()
then I get the tensorboard like these,6 charts about queue.
The tensorboard screenshot
The queue charts you are seeing are created by default from shuffle_batch and friends, and can be used to monitor the performance of your input pipeline (you'll ideally want all the queues to stay at capacity, as that means your GPU isn't blocking on input reading).
I don't understand why your summary isn't showing in tensorboard. Can I get more information?

Requesting multiple values from graph at same time

In the code below l2 surprisingly returns the same value as l1, but since the optimizer is being requested in the list before l2, I expected the loss to be the new loss after training. Can I not request multiple values at the same time from the graph and expect consistent output?
import tensorflow as tf
import numpy as np
x = tf.placeholder(tf.float32, shape=[None, 10])
y = tf.placeholder(tf.float32, shape=[None, 2])
weight = tf.Variable(tf.random_uniform((10, 2), dtype=tf.float32))
loss = tf.nn.sigmoid_cross_entropy_with_logits(tf.matmul(x, weight), y)
optimizer = tf.train.AdamOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
tf.initialize_all_variables().run()
X = np.random.rand(1, 10)
Y = np.array([[0, 1]])
# Evaluate loss before running training step
l1 = sess.run([loss], feed_dict={x: X, y: Y})[0][0][0]
print(l1) # 3.32393
# Running the training step
_, l2 = sess.run([optimizer, loss], feed_dict={x: X, y: Y})
print(l2[0][0]) # 3.32393 -- didn't change?
# Evaluate loss again after training step as sanity check
l3 = sess.run([loss], feed_dict={x: X, y: Y})[0][0][0]
print(l3) # 2.71041
No - the order in which you request them in the list has no effect on the evaluation order. For side-effect-having operations such as the optimizer, if you want to guarantee a specific ordering, you need to enforce it using with_dependencies or similar control-flow constructs. In general, ignoring side-effects, TensorFlow will return results to you by grabbing the node from the graph as soon as it's computed - and, obviously, the loss is computed before the optimizer, since the optimizer requires the loss as one of its input. (Remember that 'loss' is not a variable; it's a tensor; so it's not actually affected by the optimizer step.)
sess.run([loss, optimizer], ...)
and
sess.run([optimizer, loss], ...)
are equivalent.
As Dave points out, the order of arguments to Session.run() has no effect on the order of evaluation, and the loss tensor in your example does not have a dependency on the optimizer op. To add a dependency, you could use tf.control_dependencies() to add an explicit dependency on the optimizer running before fetching the loss:
with tf.control_dependencies([optimizer]):
loss_after_optimizer = tf.identity(loss)
_, l2 = sess.run([optimizer, loss_after_optimizer], feed_dict={x: X, y: Y})
I've tested logistic regression implemented in tensorflow with three ways of session.run:
all together
res1, res2, res3 = sess.run([op1, op2, op3])
separately
res1 = sess.run(op1)
res2 = sess.run(op2)
res3 = sess.run(op3)
with dependencies
with tf.control_dependencies([op1]):
op2_after = tf.identity(op1)
op3_after = tf.identity(op1)
res1,res2,res3 = session.run([op1, op2_after, op3_after])
set batch size as 10000, the result is:
1: 0.05+ secs < 2: 0.11+ secs < 3: 0.25+ secs
The main difference between 1 and 3 is only one mini-batch. It may not worth it to use 3 instead of 1.
Here is the test code (it is an LR example written by someone else...).
Here is the data
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 2 13:38:14 2017
#author: inse7en
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
import time
pickle_file = '/Users/inse7en/Downloads/notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
image_size = 28
num_labels = 10
def reformat(dataset, labels):
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
# Map 2 to [0.0, 1.0, 0.0 ...], 3 to [0.0, 0.0, 1.0 ...]
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
# This is to expedite the process
train_subset = 10000
# This is a good beta value to start with
beta = 0.01
graph = tf.Graph()
with graph.as_default():
# Input data.
# They're all constants.
tf_train_dataset = tf.constant(train_dataset[:train_subset, :])
tf_train_labels = tf.constant(train_labels[:train_subset])
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables
# They are variables we want to update and optimize.
weights = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
# Original loss function
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Loss function using L2 Regularization
regularizer = tf.nn.l2_loss(weights)
loss = tf.reduce_mean(loss + beta * regularizer)
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
num_steps = 50
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
with tf.Session(graph=graph) as session:
# This is a one-time operation which ensures the parameters get initialized as
# we described in the graph: random weights for the matrix, zeros for the
# biases.
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
# Run the computations. We tell .run() that we want to run the optimizer,
# and get the loss value and the training predictions returned as numpy
# arrays.
#_, l, predictions = session.run([optimizer, loss, train_prediction])
start_time = time.time()
with tf.control_dependencies([optimizer]):
loss_after_optimizer = tf.identity(loss)
predictions_after = tf.identity(train_prediction)
regularizers_after = tf.identity(regularizer)
_, l, predictions,regularizers = session.run([optimizer, loss_after_optimizer, predictions_after, regularizers_after])
print("--- with dependencies: %s seconds ---" % (time.time() - start_time))
#start_time = time.time()
#opt = session.run(optimizer)
#l = session.run(loss)
#predictions = session.run(train_prediction)
#regularizers = session.run(regularizer)
#print("--- run separately: %s seconds ---" % (time.time() - start_time))
#start_time = time.time()
#_, l, predictions,regularizers = session.run([optimizer, loss, train_prediction, regularizer])
#print("--- all together: %s seconds ---" % (time.time() - start_time))
#if (step % 100 == 0):
#print('Loss at step {}: {}'.format(step, l))
#print('Training accuracy: {:.1f}'.format(accuracy(predictions,
#train_labels[:train_subset, :])))
# Calling .eval() on valid_prediction is basically like calling run(), but
# just to get that one numpy array. Note that it recomputes all its graph
# dependencies.
# You don't have to do .eval above because we already ran the session for the
# train_prediction
#print('Validation accuracy: {:.1f}'.format(accuracy(valid_prediction.eval(),
#valid_labels)))
#print('Test accuracy: {:.1f}'.format(accuracy(test_prediction.eval(), test_labels)))
#print(regularizer)