Is creating a module with interfaces only a good idea? - oop

Creating a module (bundle, package, whatever) with only interfaces seems to me a strange idea. Yet, I don't know the other best solution to solve the following architectural requirement.
There often appears a need for a set of utilities. In many projects I can see the creation of "utils" folder, or even a seperate package (module) with frequently used ones.
Now consider the idea that you don't want to depend upon a concrete utils set. Instead you, therefore, use interfaces.
So you may create the whole project, with multiple modules, dependent only on the "Utils-Interfaces" set, which could be a separate module. Then you think you can re-use it in other projects, as these utils are frequently used.
So what do you do? Create a seperate module (package, bundle...) with interfaces with definitions of the methods to be implemented by concrete utility-classes? And re-use this "glue-interfaces-packages" (possibly with other "glues", such as bridges, providers etc.) in your various other projects? Or is there a better way to design the archictecture regarding the utilities that could be easily switched from one to another?

It seems a bit odd to have an interface for utility methods as it should be clear what they do. Also in most language you won't have static dispatch anymore. And you wouldn't solve a problem by having interfaces for utility methods. I think it would make more sense to look for a library doing the same thing or writing your own if such functionality isn't already implemented. Very specific things should be tied to the project, though.
Let's look at an example in Java:
public static boolean isDigitOnly(String text) {
return "\\d+".matches(text);
}
Let's assume one would use an interface. That would mean that you have to have an instance of such an implementation, most likely a singleton. So what's the point of that? You would write the method head twice and you don't have any advantage; interfaces are used for loose coupling, however such generic utility methods aren't bound to your application.
So maybe you just want to use a library. And actually there is one for exactly this use case: Apache Commons. Of course you may not want to include such a big library for a single method. However, if you need this many utility methods you may want to use it.
Now I've explained how to use and reuse utility methods; however, a part of your question was about using different implementations.
I can't see many cases you wanted this. If, for example, you have a method specific to a certain implementation of sockets, you may instead want
A) the utility method as a part of the API
B) an interface for different socket implementations on which you have one common utility method
If you cannot apply this to your problem, it's probably not a utility method or I didn't consider it. If you could provide me with a more specific problem I'd be happy to give you a more concrete answer.

Related

extending objects at run-time via categories?

Objective-C’s objects are pretty flexible when compared to similar languages like C++ and can be extended at runtime via Categories or through runtime functions.
Any idea what this sentence means? I am relatively new to Objective-C
While technically true, it may be confusing to the reader to call category extension "at runtime." As Justin Meiners explains, categories allow you to add additional methods to an existing class without requiring access to the existing class's source code. The use of categories is fairly common in Objective-C, though there are some dangers. If two different categories add the same method to the same class, then the behavior is undefined. Since you cannot know whether some other part of the system (perhaps even a system library) adds a category method, you typically must add a prefix to prevent collisions (for example rather than swappedString, a better name would likely be something like rnc_swappedString if this were part of RNCryptor for instance.)
As I said, it is technically true that categories are added at runtime, but from the programmer's point of view, categories are written as though just part of the class, so most people think of them as being a compile-time choice. It is very rare to decide at runtime whether to add a category method or not.
As a beginner, you should be aware of categories, but slow to create new ones. Creating categories is a somewhat intermediate-level skill. It's not something to avoid, but not something you'll use every day. It's very easy to overuse them. See Justin's link for more information.
On the other hand, "runtime functions" really do add new functionality to existing classes or even specific objects at runtime, and are completely under the control of code. You can, at runtime, modify a class such that it responds to a method it didn't previously respond to. You can even generate entirely new classes at runtime that did not exist when the program was compiled, and you can change the class of existing objects. (This is exactly how Key-Value Observation is implemented.)
Modifying classes and objects using the runtime is an advanced skill. You should not even consider using these techniques in production code until you have significant experience. And when you have that experience, it will tell you that you very seldom what to do this anyway. You will know the runtime functions because they are C-based, with names like method_exchangeImplmentations. You won't mistake them for normal ObjC (and you generally have to import objc/runtime.h to get to them.)
There is a middle-ground that bleeds into runtime manipulation called message forwarding and dynamic message resolution. This is often used for proxy objects, and is implemented with -forwardingTargetForSelector, +resolveInstanceMethod, and some similar methods. These are tools that allow classes to modify themselves at runtime, and is much less dangerous than modifying other classes (i.e. "swizzling").
It's also important to consider how all of this translates to Swift. In general, Swift has discouraged and restricted the use of runtime class manipulation, but it embraces (and improves) category-like extensions. By the time you're experienced enough to dig into the runtime, you will likely find it an even more obscure skill than it is today. But you will use extensions (Swift's version of categories) in every program.
A category allows you to add functionality to an existing class that you do not have access to source code for (System frameworks, 3rd party APIs etc). This functionality is possible by adding methods to a class at runtime.
For example lets say I wanted to add a method to NSString that swapped uppercase and lowercase letters called -swappedString. In static languages (such as C++), extending classes like this is more difficult. I would have to create a subclass of NSString (or a helper function). While my own code could take advantage of my subclass, any instance created in a library would not use my subclass and would not have my method.
Using categories I can extend any class, such as adding a -swappedString method and use it on any instance of the class, such asNSString transparently [anyString swappedString];.
You can learn more details from Apple's Docs

How does interfaces (being a substitute of multiple inheritance) achieve code reuse

This is a hard one. I've read this question in forums but nobody could come up with a satisfactory answer.
Coming from a C++ background, I've been told that Java achieves multiple inheritance through interfaces. One of the main purpose of Inheritance happens to be "code reuse".
I've been trying to understand the use of interfaces through the years. I've not understood whether interfaces achieves code reuse. If yes, then how?
Please give a good code example to substantiate that.
I already understand that interfaces are :
used to specify a contract.
used to specify additional roles,
behaviors that the class plays.
used to achieve "polymorphism", (eg: A
method like addKeyListener(KeyListener e) can accept any class that
implements KeyListener as arguments(so that it becomes of type
KeyListener),even if its not in the inheritance hierarchy of
KeyListener.
But how is it useful in the case of code reuse, when I need to add the code for the concrete methods myself....I could as well omit implementing the interface.
So how does Interfaces achieve code reusability (if it does at all)?
Coming from a C++ background, I've been told that Java achieves multiple inheritance through interfaces. One of the main purpose of Inheritance happens to be "code reuse".
Well no, Java just doesn't achieve multiple inheritance. Interfaces are the closest Java can get to multiple inheritance, but it's actually not inheritance, and it doesn't yield code reuse in the same way that inheritance can.
Where it can save you some code is that you can use all the implementations in the same way, rather than having to duplicate calling code.

When do you need to create abstractions in the form of interfaces?

When do you encourage programming against an interface and not directly to a concrete class?
A guideline that I follow is to create abstractions whenever code requires to cross a logical/physical boundary, most especially when infrastructure-related concerns are involved.
Another checkpoint would be if a dependency will likely change in the future, due to possible additional concerns code (such as caching, transactional awareness, invoking a webservice instead of in-process execution) or if such dependencies have direct references to infrastructure integration points.
If code depends on something that does not require control to cross a logical/physical boundary, I more or less don't create abstractions to interact with those.
Am I missing anything?
Also, use interfaces when
Multiple objects will need to be acted upon in a particular fashion, but are not fundamentally related. Perhaps many of your business objects access a particular utility object, and when they do they need to give a reference of themselves to that utility object so the utility object can call a particular method. Have that method in an interface and pass that interface to that utility object.
Passing around interfaces as parameters can be very helpful in unit testing. Even if you have just one type of object that sports a particular interface, and hence don't really need a defined interface, you might define/implement an interface solely to "fake" that object in unit tests.
related to the first 2 bullets, check out the Observer pattern and the Dependency Injection. I'm not saying to implement these patterns, but they illustrate types of places where interfaces are really helpful.
Another twist on this is for implementing a couple of the SOLID Principals, Open Closed principal and the Interface Segregation principle. Like the previous bullet, don't get stressed about strictly implementing these principals everywhere (right away at least), but use these concepts to help move your thinking away from just what objects go where to thinking more about contracts and dependency
In the end, let's not make it too complicated: we're in a strongly typed world in .NET. If you need to call a method or set a property but the object you're passing/using could be fundamentally different, use an interface.
I would add that if your code is not going to be referenced by another library (for a while at least), then the decision of whether to use an interface in a particular situation is one that you can responsibly put off. The "extract interface" refactoring is easy to do these days. In my current project, I've got an object being passed around that I'm thinking maybe I should switch to an interface; I'm not stressing about it.
Interfaces abstraction are convenient when doing unit test. It helps for mocking test objects. It very useful in TDD for developing without actually using data from your database.
If you don't need any features of the class that aren't found in the Interface...then why not always prefer the Interface implementation?
It will make your code easier to modify in the future and easier to test (mocking).
you have the right idea, already. i would only add a couple of notes to this...
first, abstraction does not mean 'interface'. for example, a "connection string" is an abstraction, even though it's just a string... it's not about the 'type' of the thing in question, it's about the intention of use for that thing.
and secondly, if you are doing test automation of any kind, look for the pain and friction that are exposed by writing the tests. if you find yourself having to set up too many external conditions for a test, it's a sign that you need a better abstraction between the thing your testing and the things it interacts with.
I think you've said it pretty well. Much of this will be a stylistic thing. There are open source projects I've looked at where everything has an interface and an implementation, and it's kind of frustrating, but it might make iterative development a little easier, since any objects implementation can break but dummies will still work. But honestly, I can dummy any class that doesn't overuse the final keyword by inheritance.
I would add to your list this: anything which can be thought of as a black box should be abstracted. This includes some of the things you've mentioned, but it also includes hairy algorithms, which are likely to have multiple useful implementations with different advantages for different situation.
Additionally, interfaces come in handy very often with composite objects. That's the only way something like java's swing library gets anything done, but it can also be useful for more mundane objects. (I personally like having an interface like ValidityChecker with ways to and-compose or or-compose subordinate ValidityCheckers.)
Most of the useful things that come with the Interface passing have been already said. However I would add:
implementing an interface to an object, or later multiple objects, FORCES all the implementers to follow an IDENTICAL pattern to implement contract with the object. This can be useful in case you have not so OOP-experienced-programmers actually writing the implementation code.
in some languages you can add attributes on the interface itself, which can be different from the actual object implementation attribute as sense and intent

Should every single object have an interface and all objects loosely coupled?

From what I have read best practice is to have classes based on an interface and loosely couple the objects, in order to help code re-use and unit test.
Is this correct and is it a rule that should always be followed?
The reason I ask is I have recently worked on a system with 100’s of very different objects. A few shared common interfaces but most do not and wonder if it should have had an interface mirroring every property and function in those classes?
I am using C# and dot net 2.0 however I believe this question would fit many languages.
It's useful for objects which really provide a service - authentication, storage etc. For simple types which don't have any further dependencies, and where there are never going to be any alternative implementations, I think it's okay to use the concrete types.
If you go overboard with this kind of thing, you end up spending a lot of time mocking/stubbing everything in the world - which can often end up creating brittle tests.
Not really. Service components (class that do things for your application) are a good fit for interfaces, but as a rule I wouldn't bother having interfaces for, say, basic entity classes.
For example:
If you're working on a domain model, then that model shouldn't be interfaces. However if that domain model wants to call service classes (like data access, operating system functions etc) then you should be looking at interfaces for those components. This reduces coupling between the classes and means it's the interface, or "contract" that is coupled.
In this situation you then start to find it much easier to write unit tests (because you can have stubs/mocks/fakes for database access etc) and can use IoC to swap components without recompiling your applications.
I'd only use interfaces where that level of abstraction was required - i.e. you need to use polymorphic behaviour. Common examples would be dependency injection or where you have a factory-type scenario going on somewhere, or you need to establish a "multiple inheritance" type behaviour.
In my case, with my development style, this is quite often (I favour aggregation over deep inheritance hierarchies for most things other than UI controls), but I have seen perfectly fine apps that use very little. It all depends...
Oh yes, and if you do go heavily into interfaces - beware web services. If you need to expose your object methods via a web service they can't really return or take interface types, only concrete types (unless you are going to hand-write all your own serialization/deserialization). Yes, that has bitten me big time...
A downside to interface is that they can't be versioned. Once you shipped the interface you won't be making changes to it. If you use abstract classes then you can easily extend the contract over time by adding new methods and flagging them as virtual.
As an example, all stream objects in .NET derive from System.IO.Stream which is an abstract class. This makes it easy for Microsoft to add new features. In version 2 of the frameworkj they added the ReadTimeout and WriteTimeout properties without breaking any code. If they used an interface(say IStream) then they wouldn't have been able to do this. Instead they'd have had to create a new interface to define the timeout methods and we'd have to write code to conditionally cast to this interface if we wanted to use the functionality.
Interfaces should be used when you want to clearly define the interaction between two different sections of your software. Especially when it is possible that you want to rip out either end of the connection and replace it with something else.
For example in my CAM application I have a CuttingPath connected to a Collection of Points. It makes no sense to have a IPointList interface as CuttingPaths are always going to be comprised of Points in my application.
However I uses the interface IMotionController to communicate with the machine because we support many different types of cutting machine each with their own commend set and method of communications. So in that case it makes sense to put it behind a interface as one installation may be using a different machine than another.
Our applications has been maintain since the mid 80s and went to a object oriented design in late 90s. I have found that what could change greatly exceeded what I originally thought and the use of interfaces has grown. For example it used to be that our DrawingPath was comprised of points. But now it is comprised of entities (splines, arcs, ec) So it is pointed to a EntityList that is a collection of Object implementing IEntity interface.
But that change was propelled by the realization that a DrawingPath could be drawn using many different methods. Once that it was realized that a variety of drawing methods was needed then the need for a interface as opposed to a fixed relationship to a Entity Object was indicated.
Note that in our system DrawingPaths are rendered down to a low level cutting path which are always series of point segments.
I tried to take the advice of 'code to an interface' literally on a recent project. The end result was essentially duplication of the public interface (small i) of each class precisely once in an Interface (big I) implementation. This is pretty pointless in practice.
A better strategy I feel is to confine your interface implementations to verbs:
Print()
Draw()
Save()
Serialize()
Update()
...etc etc. This means that classes whose primary role is to store data - and if your code is well-designed they would usually only do that - don't want or need interface implementations. Anywhere you might want runtime-configurable behaviour, for example a variety of different graph styles representing the same data.
It's better still when the thing asking for the work really doesn't want to know how the work is done. This means you can give it a macguffin that it can simply trust will do whatever its public interface says it does, and let the component in question simply choose when to do the work.
I agree with kpollock. Interfaces are used to get a common ground for objects. The fact that they can be used in IOC containers and other purposes is an added feature.
Let's say you have several types of customer classes that vary slightly but have common properties. In this case it is great to have a ICustomer interface to bound them together, logicaly. By doing that you could create a CustomerHander class/method that handels ICustomer objects the same way instead of creating a handerl method for each variation of customers.
This is the strength of interfaces.
If you only have a single class that implements an interface, then the interface isn't to much help, it just sits there and does nothing.

What is the best way to solve an Objective-C namespace collision?

Objective-C has no namespaces; it's much like C, everything is within one global namespace. Common practice is to prefix classes with initials, e.g. if you are working at IBM, you could prefix them with "IBM"; if you work for Microsoft, you could use "MS"; and so on. Sometimes the initials refer to the project, e.g. Adium prefixes classes with "AI" (as there is no company behind it of that you could take the initials). Apple prefixes classes with NS and says this prefix is reserved for Apple only.
So far so well. But appending 2 to 4 letters to a class name in front is a very, very limited namespace. E.g. MS or AI could have an entirely different meanings (AI could be Artificial Intelligence for example) and some other developer might decide to use them and create an equally named class. Bang, namespace collision.
Okay, if this is a collision between one of your own classes and one of an external framework you are using, you can easily change the naming of your class, no big deal. But what if you use two external frameworks, both frameworks that you don't have the source to and that you can't change? Your application links with both of them and you get name conflicts. How would you go about solving these? What is the best way to work around them in such a way that you can still use both classes?
In C you can work around these by not linking directly to the library, instead you load the library at runtime, using dlopen(), then find the symbol you are looking for using dlsym() and assign it to a global symbol (that you can name any way you like) and then access it through this global symbol. E.g. if you have a conflict because some C library has a function named open(), you could define a variable named myOpen and have it point to the open() function of the library, thus when you want to use the system open(), you just use open() and when you want to use the other one, you access it via the myOpen identifier.
Is something similar possible in Objective-C and if not, is there any other clever, tricky solution you can use resolve namespace conflicts? Any ideas?
Update:
Just to clarify this: answers that suggest how to avoid namespace collisions in advance or how to create a better namespace are certainly welcome; however, I will not accept them as the answer since they don't solve my problem. I have two libraries and their class names collide. I can't change them; I don't have the source of either one. The collision is already there and tips on how it could have been avoided in advance won't help anymore. I can forward them to the developers of these frameworks and hope they choose a better namespace in the future, but for the time being I'm searching a solution to work with the frameworks right now within a single application. Any solutions to make this possible?
Prefixing your classes with a unique prefix is fundamentally the only option but there are several ways to make this less onerous and ugly. There is a long discussion of options here. My favorite is the #compatibility_alias Objective-C compiler directive (described here). You can use #compatibility_alias to "rename" a class, allowing you to name your class using FQDN or some such prefix:
#interface COM_WHATEVER_ClassName : NSObject
#end
#compatibility_alias ClassName COM_WHATEVER_ClassName
// now ClassName is an alias for COM_WHATEVER_ClassName
#implementation ClassName //OK
//blah
#end
ClassName *myClass; //OK
As part of a complete strategy, you could prefix all your classes with a unique prefix such as the FQDN and then create a header with all the #compatibility_alias (I would imagine you could auto-generate said header).
The downside of prefixing like this is that you have to enter the true class name (e.g. COM_WHATEVER_ClassName above) in anything that needs the class name from a string besides the compiler. Notably, #compatibility_alias is a compiler directive, not a runtime function so NSClassFromString(ClassName) will fail (return nil)--you'll have to use NSClassFromString(COM_WHATERVER_ClassName). You can use ibtool via build phase to modify class names in an Interface Builder nib/xib so that you don't have to write the full COM_WHATEVER_... in Interface Builder.
Final caveat: because this is a compiler directive (and an obscure one at that), it may not be portable across compilers. In particular, I don't know if it works with the Clang frontend from the LLVM project, though it should work with LLVM-GCC (LLVM using the GCC frontend).
If you do not need to use classes from both frameworks at the same time, and you are targeting platforms which support NSBundle unloading (OS X 10.4 or later, no GNUStep support), and performance really isn't an issue for you, I believe that you could load one framework every time you need to use a class from it, and then unload it and load the other one when you need to use the other framework.
My initial idea was to use NSBundle to load one of the frameworks, then copy or rename the classes inside that framework, and then load the other framework. There are two problems with this. First, I couldn't find a function to copy the data pointed to rename or copy a class, and any other classes in that first framework which reference the renamed class would now reference the class from the other framework.
You wouldn't need to copy or rename a class if there were a way to copy the data pointed to by an IMP. You could create a new class and then copy over ivars, methods, properties and categories. Much more work, but it is possible. However, you would still have a problem with the other classes in the framework referencing the wrong class.
EDIT: The fundamental difference between the C and Objective-C runtimes is, as I understand it, when libraries are loaded, the functions in those libraries contain pointers to any symbols they reference, whereas in Objective-C, they contain string representations of the names of thsoe symbols. Thus, in your example, you can use dlsym to get the symbol's address in memory and attach it to another symbol. The other code in the library still works because you're not changing the address of the original symbol. Objective-C uses a lookup table to map class names to addresses, and it's a 1-1 mapping, so you can't have two classes with the same name. Thus, to load both classes, one of them must have their name changed. However, when other classes need to access one of the classes with that name, they will ask the lookup table for its address, and the lookup table will never return the address of the renamed class given the original class's name.
Several people have already shared some tricky and clever code that might help solve the problem. Some of the suggestions may work, but all of them are less than ideal, and some of them are downright nasty to implement. (Sometimes ugly hacks are unavoidable, but I try to avoid them whenever I can.) From a practical standpoint, here are my suggestions.
In any case, inform the developers of both frameworks of the conflict, and make it clear that their failure to avoid and/or deal with it is causing you real business problems, which could translate into lost business revenue if unresolved. Emphasize that while resolving existing conflicts on a per-class basis is a less intrusive fix, changing their prefix entirely (or using one if they're not currently, and shame on them!) is the best way to ensure that they won't see the same problem again.
If the naming conflicts are limited to a reasonably small set of classes, see if you can work around just those classes, especially if one of the conflicting classes isn't being used by your code, directly or indirectly. If so, see whether the vendor will provide a custom version of the framework that doesn't include the conflicting classes. If not, be frank about the fact that their inflexibility is reducing your ROI from using their framework. Don't feel bad about being pushy within reason — the customer is always right. ;-)
If one framework is more "dispensable", you might consider replacing it with another framework (or combination of code), either third-party or homebrew. (The latter is the undesirable worst-case, since it will certainly incur additional business costs, both for development and maintenance.) If you do, inform the vendor of that framework exactly why you decided to not use their framework.
If both frameworks are deemed equally indispensable to your application, explore ways to factor out usage of one of them to one or more separate processes, perhaps communicating via DO as Louis Gerbarg suggested. Depending on the degree of communication, this may not be as bad as you might expect. Several programs (including QuickTime, I believe) use this approach to provide more granular security provided by using Seatbelt sandbox profiles in Leopard, such that only a specific subset of your code is permitted to perform critical or sensitive operations. Performance will be a tradeoff, but may be your only option
I'm guessing that licensing fees, terms, and durations may prevent instant action on any of these points. Hopefully you'll be able to resolve the conflict as soon as possible. Good luck!
This is gross, but you could use distributed objects in order to keep one of the classes only in a subordinate programs address and RPC to it. That will get messy if you are passing a ton of stuff back and forth (and may not be possible if both class are directly manipulating views, etc).
There are other potential solutions, but a lot of them depend on the exact situation. In particular, are you using the modern or legacy runtimes, are you fat or single architecture, 32 or 64 bit, what OS releases are you targeting, are you dynamically linking, statically linking, or do you have a choice, and is it potentially okay to do something that might require maintenance for new software updates.
If you are really desperate, what you could do is:
Not link against one of the libraries directly
Implement an alternate version of the objc runtime routines that changes the name at load time (checkout the objc4 project, what exactly you need to do depends on a number of the questions I asked above, but it should be possible no matter what the answers are).
Use something like mach_override to inject your new implementation
Load the new library using normal methods, it will go through the patched linker routine and get its className changed
The above is going to be pretty labor intensive, and if you need to implement it against multiple archs and different runtime versions it will be very unpleasant, but it can definitely be made to work.
Have you considered using the runtime functions (/usr/include/objc/runtime.h) to clone one of the conflicting classes to a non-colliding class, and then loading the colliding class framework? (this would require the colliding frameworks to be loaded at different times to work.)
You can inspect the classes ivars, methods (with names and implementation addresses) and names with the runtime, and create your own as well dynamically to have the same ivar layout, methods names/implementation addresses, and only differ by name (to avoid the collision)
Desperate situations call for desperate measures. Have you considered hacking the object code (or library file) of one of the libraries, changing the colliding symbol to an alternative name - of the same length but a different spelling (but, recommendation, the same length of name)? Inherently nasty.
It isn't clear if your code is directly calling the two functions with the same name but different implementations or whether the conflict is indirect (nor is it clear whether it makes any difference). However, there's at least an outside chance that renaming would work. It might be an idea, too, to minimize the difference in the spellings, so that if the symbols are in a sorted order in a table, the renaming doesn't move things out of order. Things like binary search get upset if the array they're searching isn't in sorted order as expected.
#compatibility_alias will be able to solve class namespace conflicts, e.g.
#compatibility_alias NewAliasClass OriginalClass;
However, this will not resolve any of the enums, typedefs, or protocol namespace collisions. Furthermore, it does not play well with #class forward decls of the original class. Since most frameworks will come with these non-class things like typedefs, you would likely not be able to fix the namespacing problem with just compatibility_alias.
I looked at a similar problem to yours, but I had access to source and was building the frameworks.
The best solution I found for this was using #compatibility_alias conditionally with #defines to support the enums/typedefs/protocols/etc. You can do this conditionally on the compile unit for the header in question to minimize risk of expanding stuff in the other colliding framework.
It seems that the issue is that you can't reference headers files from both systems in the same translation unit (source file). If you create objective-c wrappers around the libraries (making them more usable in the process), and only #include the headers for each library in the implementation of the wrapper classes, that would effectively separate name collisions.
I don't have enough experience with this in objective-c (just getting started), but I believe that is what I would do in C.
Prefixing the files is the simplest solution I am aware of.
Cocoadev has a namespace page which is a community effort to avoid namespace collisions.
Feel free to add your own to this list, I believe that is what it is for.
http://www.cocoadev.com/index.pl?ChooseYourOwnPrefix
If you have a collision, I would suggest you think hard about how you might refactor one of the frameworks out of your application. Having a collision suggests that the two are doing similar things as it is, and you likely could get around using an extra framework simply by refactoring your application. Not only would this solve your namespace problem, but it would make your code more robust, easier to maintain, and more efficient.
Over a more technical solution, if I were in your position this would be my choice.
If the collision is only at the static link level then you can choose which library is used to resolve symbols:
cc foo.o -ldog bar.o -lcat
If foo.o and bar.o both reference the symbol rat then libdog will resolve foo.o's rat and libcat will resolve bar.o's rat.
Just a thought.. not tested or proven and could be way of the mark but in have you considered writing an adapter for the class's you use from the simpler of the frameworks.. or at least their interfaces?
If you were to write a wrapper around the simpler of the frameworks (or the one who's interfaces you access the least) would it not be possible to compile that wrapper into a library. Given the library is precompiled and only its headers need be distributed, You'd be effectively hiding the underlying framework and would be free to combine it with the second framework with clashing.
I appreciate of course that there are likely to be times when you need to use class's from both frameworks at the same time however, you could provide factories for further class adapters of that framework. On the back of that point I guess you'd need a bit of refactoring to extract out the interfaces you are using from both frameworks which should provide a nice starting point for you to build your wrapper.
You could build upon the library as you and when you need further functionality from the wrapped library, and simply recompile when you it changes.
Again, in no way proven but felt like adding a perspective. hope it helps :)
If you have two frameworks that have the same function name, you could try dynamically loading the frameworks. It'll be inelegant, but possible. How to do it with Objective-C classes, I don't know. I'm guessing the NSBundle class will have methods that'll load a specific class.