How to know the network status of SIM800 module using AT command? - embedded

In my current scenario, I'm using NETLIGHT Pin (Pin no. 64) of SIM800 module with my PIC microcontroller to know whether my module is registered or not?
This way I built the circuit. Just I removed LED from VBAT. Then I connect collected of NPN transistor to pic micro input PIN.
I want to know whether any easy way using AT commands to find network registration status of SIM800?

Unfortunalty it's seem not to be really possible (or in fact detecting this state in only one way)
I use SIM800 and let it run for hours and I have seen many cases of network loose, while the AT+CREG? continue telling everything is OK.
Also, even with network down, the SIM800 continue sending you the name of the operator and the strengh of the signal.
The only way I've found is to monitor the serial port: when the SIM800 loose the network, it sends two messages:
+PDP: DEACT and
+SAPBR 1: DEACT
I suggest you to have a look at the document "SIM800 Series_AT Command Manual" and especially the chapter "19.3 Summary of Unsolicited Result Codes". You'll find +PDP and other interesting code (like under-voltage warning, DNS failed...) and see some of these messages are not linked to AT command.

From the manufacturer's documentation:

Related

Can I poll my USB HID device without first sending a command

I was able to make a working HID USB stack on my "StartUSB for PIC" board for the 18F2550 microcontroller. I based it on one of the MLA libraries, which was made for the 18F45K50 (MLA 2018_11_26, hid_custom, picdem_fs_usb_k50.x), but I converted it to work with the 18F2550 (there might have been easier ways, but only learned to work with PIC about 1 month ago). On the host side, I'm using LibUsbDotNet (also here, there might be easier ways - the documentation on this library really sucks) on a Windows 10 machine.
I'm using the HID class, full speed, and all seems to work. Although, I get some random errors on the host PC (see below), but doing one close/re-open cycle on the host side when getting the error is kind of solving it. Dirty, but it works. So I kind of ignore this now.
Win32Error:Win32Error:GetOverlappedResult Ep 0x01
995:The I/O operation has been aborted because of either a thread exit or an application request.
I'm not an expert on USB (yet). But all examples I'm seeing are based on 1) you send first a command to the device and 2) then you retrieve the answer from the device. I did some performance tests, and see that this indeed shows that I can do about 500 cycles/second. I think that is correct, because each cycle, sending command and retrieving answer, each takes 1 msec.
But do I really need to send a command? Can't I just keep reading endlessly, and when the device has somthing to say, it does send the data in an IN transaction, and when not it ignores which creates a timeout on the host side. That would mean that I can poll at 1000 cycles/second? Unfortunately, I have tried it by changing my implementation on the PIC, but I get very weird results. I think I have issues with suspend mode. That brings me to another question - how can I make the device get out of suspend mode (means that not the host, but the device should be triggering this event). I have searched the MLA library for command such as "wakeup", "resume", ... but couldn't find anything.
So, to summarize, 2 questions:
Conceptual: Can I send data from device to host without being requested for it by a command from the host?
For PIC experts: How can I have a device trigger for a wakeup from suspend mode?
And indeed, the answer is Yes on the first question.
In the meantime, I found another link on the web that contains a Visual Studio C# implementation of a USB library including all the source files.
If you're interested, this is the link
This C# host implementation works as a charm. Without sending a command to the device, I get notified immediately if a button is pressed. Great!
It also proofs that my earlier device implementation based on the original MicroChip MLA, is 100% correct. I stress tested the implementation by sending a "toggle LED command" as fast as I could, and I reach 1000 commands/second. Again great!
I think that LibUsbDotNet isn't that perfect after all. As I wrote above, I get rather unstable communication (Win32Error). But with this implementation, I don't get a single error, even after running for half an hour # 1000 commands/second.
So for me, case closed.

Is it possible to test the CAN loopback mode without using oscilloscope?

I am working on the CAN on LPC1857 microcontroller. This is the first time I am working on the CAN driver.
I am right now testing the loopback mode in CAN. I have successfully transmitted the message. This I know because of the values in the status register. But now I need to verify whether I have received the same message at the receiver end. Since I do not have any oscilloscope with me, I wanted to know whether it is possible to check the output at the receiver end using software. I am using LPCxpresso IDE for the coding purpose. If yes, can you please give me a brief idea about how it is done?
Any help is appreciated.
Thanks,
Pavan.

Is it possible to programmatically power on/off the 3V3?

I have a Netduino Plus with at transeiver attached via SPI. I would like to reset the transiever every time the Netduino restarts. Is it possible to programmatically power on/off the 3V3 pin?
I would recommend using a FET (controlled by one of the I/O) pins to enable/disable 3V3 power to your transceiver. When you say transceiver, I think "more than a few mA" :)
BTW, we took this feedback into account with the new Shield Base module for Netduino Go. It has an integrated FET on both 3V3 and 5V power headers, so you could enable/disable power to your shield in code. Once the new Ethernet go!bus module ships and the Shield Base comes out of beta (soon), your solution can be redeployed to Netduino Go + Shield Base with few/no code changes.
Chris
Secret Labs LLC
Looking at the circuit diagram ( http://www.netduino.com/netduinoplus/schematic.pdf ), I can see only the Micro SD Card Slot having its power controlled programmatically. You could rig up a relay to control it (via a transistor, of course) instead, or if the transceiver uses less than 130mA (the current limit of the device shown: http://www.datasheetarchive.com/BSS84W-7-F-datasheet.html) you could copy the circuit from the Netduino Plus. Buying a relay shield looks like overkill, but you might have other uses for it.
Have you looked into resetting the transceiver programmatically instead of the brute-force method of power-cycling it?
Just to provide another view. You could use a transistor powered off the netduino RESET line, this will reset the device every time the netduino reboots. Or you can just link the transistor to a spare digital pin and power it in code..
What specific SPI device are you using? You mention that it's a transceiver but we could probably provide better information if we know the exact part number. If your device requires less than 8mA the Netduino Plus specs seem to indicate that one option could be using a digital output pin as the power source.
Unfortunately Secret Labs don't use exactly the language I'd expect and call out the sink and source current maximums so I would contact them directly first to see if you risk blowing your chip. I'll see if I can get an answer from them and amend this post if/when I do.
Update: Sink and source current is the same on the Netduino. See my post on their forums about sink vs. source current for a more in depth explanation. So, if your device can run off of just a few milliamps you should be able to use a digital I/O pin to power it.
Also, a lot of devices have enable pins. You can usually reset them with that line instead of pulling the power if that helps. Sometimes with flaky hardware it is better to pull the power though.

Reading values from a Power Meter via USB

Over the past two days, I am doing some reading on how to get data over USB from an external device which has no device driver installed. I have to read data from a WT500 Yokogawa Power Meter (basically I want to read just one of the parameter that the meter shows, just the power values) over USB. I am aware that a device driver for WT500 is available, but it has some dependencies and I do not want to install a software or change anything majorly in our node to cater to that.
I have found that libusb could be used to perform what I would want, and I have a C program that sniffs the USB device and returns some information. I have looked into usb-robot as well, which also uses libusb. The server node that I am probing has OpenSUSE Linux kernel 2.6.30. I have usbfs mounted.
Question:
I am expecting that using libusb, I would be able to get data dumps from the power meter whenever I request, via usb device. Can I request the meter something like - send 25k of data, and then upon parsing it, I get the parameter value that I am looking for? Considering that I have zero knowledge about the device, can I get some meaningful values out of it? An example code would help.
--
There are some standard messages like ?IDN with which a USBTMC device could be queried. However, specific queries need to be sent to a meter (the syntax should be there in the technical doc/manual/communication interface) if one needs to get whatever is showing up on screen.
I guess there are no easier ways of doing what I want - like just reading a file using something like fread ??
--
Yes, almost. If USBTMC module is installed (the default one in our kernel did not work, detailed explanation of installing and querying a device is here - http://code.google.com/p/scte/wiki/USBTMC), then one just needs to send some queries and read the response via cat or something from the specific files under /dev.
From the meter technical document, I see that the driver communication interface that is described is Windows specific, so I reckon I might need to do some reverse engineering.
--
Yes, but only a tiny bit or may be not at all.
Thank you.
EDIT: After a bit of googling I think I have the answers, I have added them next to the questions I asked.

Any higher level protocol over serial port communication ?

We are running a course in robotics and Xbee is the most favorite communication protocol for the student. In last two years we helped them build around 62 various projects (40 more in pipeline).
All most all the projects involve sending different kind of data to the bot. Sometimes it is a 1 byte command where as sometimes it is a long string to be interpreted. Sometimes we face the issue of addressing a bot when one xbee is used in broadcast mode to send messages to a particular bot among several. Students use their creativity to address this issue each time.
I personally feel this is reinvesting the wheel. I wonder if any higher level protocol proposals exist for serial port communication and if there isn't any specific protocol design I wonder if if the worth designing one for the student needs.
Do you mean internal only protocol of your system? If yes, often embedded software engineers incline to roll their own protocols. Most of them talks that it lets them make most optimal system.
It is not ideal approach. I agree with you that it's good for students to learn good examples.
Unfortunately I don't know any protocol stack fitting well robotics application. But I advice you to try google's protocol buffer system, its able to simplify most efforts of building protocols engines, and it works with plain c too.
You can implement Modbus ASCII if you want to go with a standard protocol that's already open.
Comli is a master/slave protocol that is used in some older devices or when it is not possible to use ethernet. You can probably get the specification from ABB if you ask - it's no secret.
That said you can put an OPC server/client architecture on top of that to get a bit more powerful communication e.g.
+--------------+ +--------------+ +--------+
| OPC UA Client| -- | OPC UA Server| -comli- | Device |
+--------------+ +--------------+ +--------+
This would make your OPC UA client protocol indepedent which makes things a bit easier down the road.
Modbus is another serial protocol that is used a lot
I believe OPC will give you the highlevel operation that you want.
see
www.opcfoundation.org
www.abb.com
PS. OPC UA is not the same as the old OLE version and thus has nothing to do with COM/DCOM
Like mjh2007 said, Modbus is standard, open and easy. The only problem I can see is if you want the robot to respond "quickly" to a command, since serial Modbus uses timeouts to detect the end of a packet. You can get around this by ignoring the timeout requirements and calculating the expected size of a packet based on it's function code and parameters as you are receiving it, then you can start processing the command immediately upon receiving the last byte and verifying any checksums. This page has some more details on implementing such a scheme.
Be sure to make use of the XBee module's "Transmit Explicit" frame (type 0x11) running in API mode with ATAO set to 1. You can unicast to a particular bot on your network, instead of always broadcasting frames. On a mesh ZigBee network, you want to avoid broadcasts as much as possible.
I'm guessing you're either using "AT mode" for sending raw data, or using "API mode" with ATAO set to 0 (sometimes referred to as "transparent serial").
If you look at that frame type (0x11), you'll see that the recipient gets an 0x91 frame that contains multiple fields already (source/destination endpoint, cluster, profile ID). You can re-purpose those fields since you're not trying to do ZigBee networking.