I am trying to learn some classification in Scikit-learn. However, I couldn't figure out what this error means.
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
data_frame = pd.read_csv('data.csv', header=0)
data_in_numpy = data_frame.values
c = CountVectorizer()
c.fit_transform(data_in_numpy.data)
This throws an error:
NotImplementedError: multi-dimensional sub-views are not implemented
How can I go around this issue? One record from my csv file looks like:
Time Directors Actors Rating Label
123 Abc, Def A, B,c 7.2 1
I suppose this error is due to the fact that there are more than one values under Directors or Actors column.
Any help would be appreciated.
Thanks,
According to the docstring, sklearn.feature_extraction.text.CountVectorizer will:
Convert a collection of text documents to a matrix of token counts
So then why, I wonder, are you inputing numerical values?
Try transforming only the strings (directors and actors):
data_in_numpy['X'] = data_frame[['Directors', 'Actors']].apply(lambda x: ' '.join(x), axis=1)
data_in_numpy = data_frame['X'].values
First though, you might want to clean the data up by removing the commas.
data_frame['Directors'] = data_frame['Directors'].str.replace(',', ' ')
data_frame['Actors'] = data_frame['Actors'].str.replace(',', ' ')
Related
I need to fill a pandas dataframe in a list comprehension.
Although rows satisfying the criterias are appended to the dataframe.
However, at the end, dataframe is empty.
Is there a way to resolve this?
In real code, I'm doing many other calculations. This is a simplified code to regenerate it.
import pandas as pd
main_df = pd.DataFrame(columns=['a','b','c','d'])
main_df=main_df.append({'a':'a1', 'b':'b1','c':'c1', 'd':'d1'},ignore_index=True)
main_df=main_df.append({'a':'a2', 'b':'b2','c':'c2', 'd':'d2'},ignore_index=True)
main_df=main_df.append({'a':'a3', 'b':'b3','c':'c3', 'd':'d3'},ignore_index=True)
main_df=main_df.append({'a':'a4', 'b':'b4','c':'c4', 'd':'d4'},ignore_index=True)
print(main_df)
sub_df = pd.DataFrame()
df_columns = main_df.columns.values
def search_using_list_comprehension(row,sub_df,df_columns):
if row[0]=='a1' or row[0]=='a2':
dict= {a:b for a,b in zip(df_columns,row)}
print('dict: ', dict)
sub_df=sub_df.append(dict, ignore_index=True)
print('sub_df.shape: ', sub_df.shape)
[search_using_list_comprehension(row,sub_df,df_columns) for row in main_df.values]
print(sub_df)
print(sub_df.shape)
The problem is that you define an empty frame with sub_df = dp.DataFrame() then you assign the same variable within the function parameters and within the list comprehension you provide always the same, empty sub_df as parameter (which is always empty). The one you append to within the function is local to the function only. Another “issue” is using python’s dict variable as user defined. Don’t do this.
Here is what can be changed in your code in order to work, but I would strongly advice against it
import pandas as pd
df_columns = main_df.columns.values
sub_df = pd.DataFrame(columns=df_columns)
def search_using_list_comprehension(row):
global sub_df
if row[0]=='a1' or row[0]=='a2':
my_dict= {a:b for a,b in zip(df_columns,row)}
print('dict: ', my_dict)
sub_df = sub_df.append(my_dict, ignore_index=True)
print('sub_df.shape: ', sub_df)
[search_using_list_comprehension(row) for row in main_df.values]
print(sub_df)
print(sub_df.shape)
i'm a complete beginner and i have a college stats project, im comparing exam scores for our year group and the one below. i collected my own data and since i do cs i decided to try visualize the data with pandas and matplotlib (my first time). i was able to read the csv file into a dataframe with columns = Level,Grade,Difficulty,Happy,MAG. Level is just ' year group ' e.g. AS or A2. and MAG is like a minimum expected grade, the rest are numeric values out of 5.
i want to do some type of plotting but i cant' seem to get it work.
i want to plot revision against difficulty? for AS group and try show a correlation. i also want to show a barchart ( if appropriate ) for Grade Vs MAG.
here is the csv https://docs.google.com/spreadsheets/d/169UKfcet1qh8ld-eI7B4U14HIl7pvgZfQLE45NrleX8/edit?usp=sharing
this is the code so far:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv('Report Task.csv')
df.columns = ['Level','Grade','Difficulty','Revision','Happy','MAG'] #numerical values are out of 5
df[df.Level.str.match('AS')] #to get only AS group
plt.plot(df.Revision, df.Difficulty)
this is my first time ever posting on stack so im really sorry if i did something wrong.
For difficulty vs revision, you were using a line plot. You're probably looking for a scatter plot:
df = df[df.Level.str.match('AS')] # note the extra `df =` as per comments
plt.scatter(x=df.Revision, y=df.Difficulty)
plt.xlabel('Revision')
plt.ylabel('Difficulty')
Alternatively you can plot via pandas directly:
df = df[df.Level.str.match('AS')] # note the extra `df =` as per comments
df.plot.scatter(x='Revision', y='Difficulty')
I have other programs where I group and count fields. Now, I want to get a count of each boolean field. Is there a Pandas way to do that rather than me looping and writing my own code? Ideally, I would generated a new dataframe with the results (kind of like what I did here).
Easy Example CSV Data (data about poker hands generated):
Hand,Other1,Other2,IsFourOfAKind,IsThreeOfAKind,IsPair
1,'a','b',1,0,0
2,'c','d',0,1,0
3,'a','b',0,1,0
4,'x','y',0,0,1
5,'a','b',0,0,1
6,'a','b',0,0,1
7,'a','b',0,0,1
Program:
import pandas as pd
import warnings
filename = "./data/TestGroup2.csv"
# tell run time to ignore certain read_csv type errors (from pandas)
warnings.filterwarnings('ignore', message="^Columns.*")
count_cols = ['IsFourOfAKind','IsThreeOfAKind','IsPair ']
enter code here
#TODO - use the above to get counts of only these columns
df = pd.read_csv(filename)
print(df.head(10))
Desired Output - could just be a new dataframe
Column Count
IsFourOfAKind 1
IsThreeOfAKind 2
IsPair 3
Please try:
df.filter(like='Is').sum(0)
or did you need;
df1=df.filter(like='Is').agg('sum').reset_index().rename(columns={'index':'column', 0:'count'})
I am beginner in Python and I am stuck with data which is array of 32763 number, separated by comma. Please find the data here data
I want to convert this into two column 1 from (0:16382) and 2nd column from (2:32763). in the end I want to plot column 1 as x axis and column 2 as Y axis. I tried the following code but I am not able to extract the columns
import numpy as np
import pandas as pd
import matplotlib as plt
data = np.genfromtxt('oscilloscope.txt',delimiter=',')
df = pd.DataFrame(data.flatten())
print(df)
and then I want to write the data in some file let us say data1 in the format as shown in attached pic
It is hard to answer without seeing the format of your data, but you can try
data = np.genfromtxt('oscilloscope.txt',delimiter=',')
print(data.shape) # here we check we got something useful
# this should split data into x,y at position 16381
x = data[:16381]
y = data[16381:]
# now you can create a dataframe and print to file
df = pd.DataFrame({'x':x, 'y':y})
df.to_csv('data1.csv', index=False)
Try this.
#input as dataframe df, its chunk_size, extract output as list. you can mention chunksize what you want.
def split_dataframe(df, chunk_size = 16382):
chunks = list()
num_chunks = len(df) // chunk_size + 1
for i in range(num_chunks):
chunks.append(df[i*chunk_size:(i+1)*chunk_size])
return chunks
or
np.array_split
I have dataframe column 'review' with content like 'Food was Awesome' and I want a new column which counts the number of repetition of each word.
name The First Years Massaging Action Teether
review A favorite in our house!
rating 5
Name: 269, dtype: object
Expecting output like ['Food':1,'was':1,'Awesome':1]
I tried with for loop but its taking too long to execute
for row in range(products.shape[0]):
try:
count_vect.fit_transform([products['review_without_punctuation'][row]])
products['word_count'][row]=count_vect.vocabulary_
except:
print(row)
I would like to do it without for loop.
I found a solution for this.
I have defined a function like this-
def Vectorize(text):
try:
count_vect.fit_transform([text])
return count_vect.vocabulary_
except:
return-1
and applied above function-
from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()
products['word_count'] = products['review_without_punctuation'].apply(Vectorize)
This solution worked and I got vocabulary in new column.
You can get the count vector for all docs like this:
cv = CountVectorizer()
count_vectors = cv.fit_transform(products['review_without_punctuation'])
To get the count vector in array format for a particular document by index, say, the 1st doc,
count_vectors[0].toarray()
The vocabulary is in
cv.vocabulary_
To get the words that make up a count vector, say, for the 1st doc, use
cv.inverse_transform(count_vectors[0])