Multiple XMPP servers to handle upstream GCM messages - google-cloud-messaging

I want to have multiple XMPP servers listening on upstream GCM messages for load balancing and fault tolerance. If I connect two servers to the same sender ID, would google automatically split the messages between them?

It's stated in Implementing an XMPP Connection Server that, periodically, CCS needs to close down a connection to perform load balancing to control messages.
Before it closes the connection, CCS sends a CONNECTION_DRAINING message to indicate that the connection is being drained and will be closed soon. "Draining" refers to shutting off the flow of messages coming into a connection, but allowing whatever is already in the pipeline to continue. When you receive a CONNECTION_DRAINING message, you should immediately begin sending messages to another CCS connection, opening a new connection if necessary. You should, however, keep the original connection open and continue receiving messages that may come over the connection (and ACKing them)—CCS handles initiating a connection close when it is ready.
I might be wrong but what I understand is that splitting of messages is not done since there's only one active connection. Sending of messages to another server starts as soon as CCS sends message that connection will be closed.

Related

WebRTC Connection State management

What I wish to achieve:
When establish a connection, prevent user from sending any message until the connection had finished all the setup (with STUN/TURN server etc)
When there is a sudden disconnect, prevent the user from sending any message until the connection is re-established.
My best guess is either one of the event handler below will do the trick, but I don't know which one, and don't know what are the differences between the two.
onconnectionstatechange()
oniceconnectionstatechange()
oniceconnectionstatechange doesn't include the establishment of the DTLS handshake on top of the ice connection.
Use onconnectionstatechange to detect when the connection is fully established and also to detect disconnections.

How to detect server-side disconnection of TCPClient?

The System.Net.TcpClient object can only connect to an endpoint once. If the client forces the disconnect, then it is clear that the client needs to be replaced. If the server cancels the connection, then it is possible to test the connection and know when it is no longer connected. However once it has been disconnected, I cannot see any property or method that differentiated the disconnected and used client from a disconnected and fresh client.
What is the correct way to test for a disconnected and used client?

RabbitMQ Connect/Disconnect Notifications

I am new to RabbitMQ and I am working on an application that will receive information from many devices and route all messages into a couple of queues depending on the MQTT topic. I was able to get all of this working easily, but now I am looking into how to push a message to a queue when a client connects or disconnects from RabbitMQ in order to update the current status of the client in my database. Is there a way to do this?
Event Exchange Plugin
Client connection, channels, queues, consumers, and other parts of the system naturally generate events. For example, when a connection is accepted, authenticated and access to the target virtual host is authorised, it will emit an event of type connection_created. When a connection is closed or fails for any reason, a connection_closed event is deleted.
Unfortunately the rabbitmq_event_exchange is created after importing bindings from definition.json. Which means that the amq.rabbitmq.event cannot be bound to a queue via the configuration and must be bound after the start.

WCF client becomes unusuable after internet is lost and reconnected

On this previous question: Tell when wcf client lost connection One of the commenters states:
Your service should not care whether a network cable was disconnected.
One feature of TCP is that unless someone is actively sending data, it
can tolerate momentary interruptions in network connectivity.
This is even more true in WCF, where there are layers of extra
framework to help protect you against network unreliability.
I'm having an issue where this is not working correctly. I have WCF client that makes a connection to the server using a DuplexChannelFactory. The connection stays open for 3 minutes. I disconnect the client from the internet and reconnect. The client regains internet connection, however any calls made from the server to that client fail. Once the client reconnects it begins working again.
When I pull the plug on the internet, the client throws several exceptions but the channel is still listed as being in an open state. Once the connection is regained and I made a request from the server to the client, I get errors such as: The communication object, System.ServiceModel.Channels.ServiceChannel, cannot be used for communication because it has been Aborted.
Obviously if the request comes in when the client is offline it won't work, but I'm trying to get it so this channel will recover once the internet comes back without having to set up a new connection.
Should this be working as-is, based on the comment I listed above? Or is there something I need to change to make that actually work?
The issue here is that the channel you're trying to use is in a faulted state, and cannot be used any longer (as the error message indicates).
Your client needs to trap (catch) that exception, and then abort the current channel and create a new one. WCF will not do that for you automatically, you have to code for it yourself.
You could also check the CommunicationState of the channel to see if it is faulted, and recover that way.
A final option would be to use the OnFaulted event handler, and when the channel is faulted, abort the channel and create a new one.

How do you replay missed messages when using STOMP to connect to RabbitMQ?

I've got an iOS application which uses a STOMP Client to talk to RabbitMQ. The application loads a lot of state during startup, and then keeps that state in sync by receiving updates published on STOMP. Of course, if it loses its connection, it can no longer be sure it's in sync, and therefore has to re-load that large initial blob. Any kind of network interruption triggers this behavior and makes my customers sad.
There are a lot of big-picture ways to fix this (and I'm working on them) but in the meantime, I'm trying to use persistent queues to solve this problem. The idea is that the server will create a queue, bind it to the appropriate topics, and then start building the large startup bundle. When finished, it will hand everything off to the client. The client will set itself up with the startup bundle, open a subscription to the queue, and then process any updates which happened while the server was getting things ready. Similarly, if the client should become disconnected, it can simply reconnect and resume reading the messages it finds in the queue.
My problem is that while the client successfully receives messages sent after it connects, if there were any messages in the queue before it connected, they are not read. Likewise, if the client becomes disconnected, when it reconnects, it won't see any messages which arrived while it was away.
Can anyone suggest how I might get the client to be able to read those missing messages?
It turns out what was happening was that the STOMP adapter was consuming the messages but failing to deliver them. Thus, when the client reconnected, it wouldn't have any messages waiting for it.
To fix the problem, I changed the "ack" setting on the subscribe request to "client", meaning that STOMP shouldn't consider the message delivered until the client sends back an ACK frame. By changing my client appropriately, messages now get delivered even after the client has been away.