Is there something I can change to make my view run faster? - sql

I just created a view but it is really slow, since my actual table has something around 800k rows.
Is there something I can change in the actual sql code to make it run faster?
Here is how it looks now:
Select B.*
FROM
(Select A.*, (select count(B.KEY_ID)/77
FROM book_new B
where B.KEY_ID = A.KEY_ID) as COUNT_KEY
FROM
(select *
from book_new
where region = 'US'
and (actual_release_date is null or
actual_release_date >= To_Date( '01/07/16','dd/mm/yy'))
) A
) B
WHERE B.COUNT_KEY = 1
OR (B.COUNT_KEY > 1 AND B.NEW_OLD <> 'Old')

The most obvious things to do are add indexes:
Add an index on book_new(key_id)
Add an index on book_new(region, actual_release_date)
These are probably sufficient. It is possible that rewriting the query would help, but this is a good beginning. If you want to rewrite the query, it would help if you described the logic you are trying to implement.

There are many ways to solve this issue based on your needs
You can create an indexed view
You can create an index in the base tables which are used in this view.
You can use the required columns in the SELECT statement instead of using SELECT * FROM,
If the table contains many columns but you require only few columns, you can create a NON CLUSTERED INDEX with INCLUDE COLUMNS option which will reduce the LOGICAL READS.

For starters, replace the scalar subquery for COUNT_KEY with a windowed COUNT(*).
SELECT * FROM
(
select book_new.*, COUNT(*) OVER ( PARTITION BY book_new.key_id)/77 COUNT_KEY
from book_new
where region = 'US'
and (actual_release_date is null or
actual_release_date >= To_Date( '01/07/16','dd/mm/yy'))
)
WHERE count_key = 1 OR ( count_key > 1 AND new_old <> 'Old' )
This way, you only go through the BOOK_NEW table one time.
BTW, I agree with other comments that this query makes little sense.

Related

selecting minimum value depending on other value

Is there any better way for below sql query? Don't want to drop and create temporary table just would like to do it in 1 query.
I am trying to select minimum value for price depending if its order sell where obviously price is higher then in buy and it just shows 0 results when I try it.
DROP TABLE `#temporary_table`;
CREATE TABLE `#temporary_table` (ID int(11),region int(11),nazwa varchar(100),price float,isBuyOrder int,volumeRemain int,locationID int,locationName varchar(100),systemID int,security_status decimal(1,1));
INSERT INTO `#temporary_table` SELECT * FROM hauling WHERE isBuyOrder=0 ORDER BY ID;
SELECT * FROM `#temporary_table`;
SELECT * FROM `#temporary_table` WHERE (ID,price) IN (select ID, MIN(price) from `#temporary_table` group by ID) order by `ID`
UPDATE: when I try nvogel answer and checked profiling thats what I get:
Any chance to optimize this or different working way with 700k rows database?
Try this:
SELECT *
FROM hauling AS h
WHERE isBuyOrder = 0
AND price =
(SELECT MIN(t.price)
FROM hauling AS t
WHERE t.isBuyOrder = 0
AND t.ID = h.ID);
You don't need a temporary table at all. You can basically use your current logic:
SELECT h.*
FROM hauling h
WHERE h.isBuyOrder = 0 AND
(h.id, h.price) IN (SELECT h2.id, MIN(h2.price)
FROM hauling h2
WHERE h2.isBuyOrder = 0
)
ORDER BY h.id
There are many other ways to write similar logic. However, there is no need to rewrite the logic; you just need to include the comparison on isBuyOrder in the subquery.
Note that not all databases support IN with tuples. If your database does not provide such support, then you would need to rewrite the logic.

optimizing derived-subquery performance pulling distinct records into a group_concat()

in this query https://www.db-fiddle.com/f/wi525XMRAff2GHUrBpWAM8/5
select x.`id`, (
select
group_concat(d.`content`)
from (
select
docs.`content`
from
`docs`
where
docs.`x_id` = 1
group by
docs.`content`
) as `d`
) as `letters`
from `x`
where x.`id` = 1;
im supposed to pull the x.id from x table and with it the letters from docs table linked using docs.x_id once and that why i used a static x.id = 1
the letters in the docs table can be duplicated for same x_id so i wanted to pull it distinctly so i went the route of scalar query but can the query get more optimized?
i'm using latest mariadb version and gives me extra: Using index; Using temporary; Using filesort unlike the one in the fiddle showing extra: Using index condition; Using temporary
i've also tried using this query https://www.db-fiddle.com/f/wi525XMRAff2GHUrBpWAM8/4
select x.`id`, group_concat(d.`content`) as `letters`
from `x`
inner join (
select
d.`x_id`, d.`content`
from
`docs` d
where
d.`x_id` = 1
group by
d.`x_id`, d.`content`
) d ON d.`x_id` = 1
where x.`id` = 1;
which gives a better execution plan results for mysql 8 but on mariadb (mysql 5.5.5) it is the same results as the first query
I would try:
select x.`id`,
(select group_concat(distinct d.`content`)
from docs
where docs.`x_id` = 1
) as `letters`
from `x`
where x.`id` = 1;
Even simpler:
SELECT 1 AS id,
GROUP_CONCAT(DISTINCT content) AS letters
FROM docs
WHERE x_id = 1
However, I suspect you over-simplified the query. So this simplification may not completely apply.
In any case, try not to think "subquery" as a solution to problems. Notice how you needed 2 subqueries, but I did it in 0. And it is probably a lot faster.
For further speedup, change INDEX(x_id) to INDEX(x_id, content).
"Using filesort" and "Using temporary" are not the end of the world. In some queries they are absolutely necessary. Furthermore, "filesort" is usually done in RAM; no disk is injured in the filming of this query. I think my query and INDEX avoid them anyway.
Caution: There is a default limit of 1024 on GROUP_CONCAT. See group_concat_max_len.

Ensuring two columns only contain valid results from same subquery

I have the following table:
id symbol_01 symbol_02
1 abc xyz
2 kjh okd
3 que qid
I need a query that ensures symbol_01 and symbol_02 are both contained in a list of valid symbols. In other words I would needs something like this:
select *
from mytable
where symbol_01 in (
select valid_symbols
from somewhere)
and symbol_02 in (
select valid_symbols
from somewhere)
The above example would work correctly, but the subquery used to determine the list of valid symbols is identical both times and is quite large. It would be very innefficient to run it twice like in the example.
Is there a way to do this without duplicating two identical sub queries?
Another approach:
select *
from mytable t1
where 2 = (select count(distinct symbol)
from valid_symbols vs
where vs.symbol in (t1.symbol_01, t1.symbol_02));
This assumes that the valid symbols are stored in a table valid_symbols that has a column named symbol. The query would also benefit from an index on valid_symbols.symbol
You could try use a CTE like;
WITH ValidSymbols AS (
SELECT DISTINCT valid_symbol
FROM somewhere
)
SELECT mt.*
FROM MyTable mt
INNER JOIN ValidSymbols v1
ON mt.symbol_01 = v1.valid_symbol
INNER JOIN ValidSymbols v2
ON mt.symbol_02 = v2.valid_symbol
From a performance perspective, your query is the right way to do this. I would write it as:
select *
from mytable t
where exists (select 1
from valid_symbols vs
where t.symbol_01 = vs.valid_symbol
) and
exists (select 1
from valid_symbols vs
where t.symbol_02 = vs.valid_symbol
) ;
The important component is that you need an index on valid_symbols(valid_symbol). With this index, the lookup should be pretty fast. Appropriate indexes can even work if valid_symbols is a view, although the effect depends on the complexity of the view.
You seem to have a situation where you have two foreign key relationships. If you explicitly declare these relationships, then the database will enforce that the columns in your table match the valid symbols.

'In' clause in SQL server with multiple columns

I have a component that retrieves data from database based on the keys provided.
However I want my java application to get all the data for all keys in a single database hit to fasten up things.
I can use 'in' clause when I have only one key.
While working on more than one key I can use below query in oracle
SELECT * FROM <table_name>
where (value_type,CODE1) IN (('I','COMM'),('I','CORE'));
which is similar to writing
SELECT * FROM <table_name>
where value_type = 1 and CODE1 = 'COMM'
and
SELECT * FROM <table_name>
where value_type = 1 and CODE1 = 'CORE'
together
However, this concept of using 'in' clause as above is giving below error in 'SQL server'
ERROR:An expression of non-boolean type specified in a context where a condition is expected, near ','.
Please let know if their is any way to achieve the same in SQL server.
This syntax doesn't exist in SQL Server. Use a combination of And and Or.
SELECT *
FROM <table_name>
WHERE
(value_type = 1 and CODE1 = 'COMM')
OR (value_type = 1 and CODE1 = 'CORE')
(In this case, you could make it shorter, because value_type is compared to the same value in both combinations. I just wanted to show the pattern that works like IN in oracle with multiple fields.)
When using IN with a subquery, you need to rephrase it like this:
Oracle:
SELECT *
FROM foo
WHERE
(value_type, CODE1) IN (
SELECT type, code
FROM bar
WHERE <some conditions>)
SQL Server:
SELECT *
FROM foo
WHERE
EXISTS (
SELECT *
FROM bar
WHERE <some conditions>
AND foo.type_code = bar.type
AND foo.CODE1 = bar.code)
There are other ways to do it, depending on the case, like inner joins and the like.
If you have under 1000 tuples you want to check against and you're using SQL Server 2008+, you can use a table values constructor, and perform a join against it. You can only specify up to 1000 rows in a table values constructor, hence the 1000 tuple limitation. Here's how it would look in your situation:
SELECT <table_name>.* FROM <table_name>
JOIN ( VALUES
('I', 'COMM'),
('I', 'CORE')
) AS MyTable(a, b) ON a = value_type AND b = CODE1;
This is only a good idea if your list of values is going to be unique, otherwise you'll get duplicate values. I'm not sure how the performance of this compares to using many ANDs and ORs, but the SQL query is at least much cleaner to look at, in my opinion.
You can also write this to use EXIST instead of JOIN. That may have different performance characteristics and it will avoid the problem of producing duplicate results if your values aren't unique. It may be worth trying both EXIST and JOIN on your use case to see what's a better fit. Here's how EXIST would look,
SELECT * FROM <table_name>
WHERE EXISTS (
SELECT 1
FROM (
VALUES
('I', 'COMM'),
('I', 'CORE')
) AS MyTable(a, b)
WHERE a = value_type AND b = CODE1
);
In conclusion, I think the best choice is to create a temporary table and query against that. But sometimes that's not possible, e.g. your user lacks the permission to create temporary tables, and then using a table values constructor may be your best choice. Use EXIST or JOIN, depending on which gives you better performance on your database.
Normally you can not do it, but can use the following technique.
SELECT * FROM <table_name>
where (value_type+'/'+CODE1) IN (('I'+'/'+'COMM'),('I'+'/'+'CORE'));
A better solution is to avoid hardcoding your values and put then in a temporary or persistent table:
CREATE TABLE #t (ValueType VARCHAR(16), Code VARCHAR(16))
INSERT INTO #t VALUES ('I','COMM'),('I','CORE')
SELECT DT. *
FROM <table_name> DT
JOIN #t T ON T.ValueType = DT.ValueType AND T.Code = DT.Code
Thus, you avoid storing data in your code (persistent table version) and allow to easily modify the filters (without changing the code).
I think you can try this, combine and and or at the same time.
SELECT
*
FROM
<table_name>
WHERE
value_type = 1
AND (CODE1 = 'COMM' OR CODE1 = 'CORE')
What you can do is 'join' the columns as a string, and pass your values also combined as strings.
where (cast(column1 as text) ||','|| cast(column2 as text)) in (?1)
The other way is to do multiple ands and ors.
I had a similar problem in MS SQL, but a little different. Maybe it will help somebody in futere, in my case i found this solution (not full code, just example):
SELECT Table1.Campaign
,Table1.Coupon
FROM [CRM].[dbo].[Coupons] AS Table1
INNER JOIN [CRM].[dbo].[Coupons] AS Table2 ON Table1.Campaign = Table2.Campaign AND Table1.Coupon = Table2.Coupon
WHERE Table1.Coupon IN ('0000000001', '0000000002') AND Table2.Campaign IN ('XXX000000001', 'XYX000000001')
Of cource on Coupon and Campaign in table i have index for fast search.
Compute it in MS Sql
SELECT * FROM <table_name>
where value_type + '|' + CODE1 IN ('I|COMM', 'I|CORE');

sql server-query optimization with many columns

we have "Profile" table with over 60 columns like (Id, fname, lname, gender, profilestate, city, state, degree, ...).
users search other peopel on website. query is like :
WITH TempResult as (
select ROW_NUMBER() OVER(ORDER BY #sortColumn DESC) as RowNum, profile.id from Profile
where
(#a is null or a = #a) and
(#b is null or b = #b) and
...(over 60 column)
)
SELECT profile.* FROM TempResult join profile on TempResult.id = profile.id
WHERE
(RowNum >= #FirstRow)
AND
(RowNum <= #LastRow)
sql server by default use clustered index for execution query. but total execution time is over 300. we test another solution such as multi column index in all columns in where clause but total execution time is over 400.
do you have any solution to make total execution time lower than 100.
we using sql server 2008.
Unfortunately I don't think there is a pure SQL solution to your issue. Here are a couple alternatives:
Dynamic SQL - build up a query that only includes WHERE clause statements for values that are actually provided. Assuming the average search actually only fills in 2-3 fields, indexes could be added and utilized.
Full Text Search - go to something more like a Google keyword search. No individual options.
Lucene (or something else) - Search outside of SQL; This is a fairly significant change though.
One other option that I just remembered implementing in a system once. Create a vertical table that includes all of the data you are searching on and build up a query for it. This is easiest to do with dynamic SQL, but could be done using Table Value Parameters or a temp table in a pinch.
The idea is to make a table that looks something like this:
Profile ID
Attribute Name
Attribute Value
The table should have a unique index on (Profile ID, Attribute Name) (unique to make the search work properly, index will make it perform well).
In this table you'd have rows of data like:
(1, 'city', 'grand rapids')
(1, 'state', 'MI')
(2, 'city', 'detroit')
(2, 'state', 'MI')
Then your SQL will be something like:
SELECT *
FROM Profile
JOIN (
SELECT ProfileID
FROM ProfileAttributes
WHERE (AttributeName = 'city' AND AttributeValue = 'grand rapids')
AND (AttributeName = 'state' AND AttributeValue = 'MI')
GROUP BY ProfileID
HAVING COUNT(*) = 2
) SelectedProfiles ON Profile.ProfileID = SelectedProfiles.ProfileID
... -- Add your paging here
Like I said, you could use a temp table that has attribute name/values:
SELECT *
FROM Profile
JOIN (
SELECT ProfileID
FROM ProfileAttributes
JOIN PassedInAttributeTable ON ProfileAttributes.AttributeName = PassedInAttributeTable.AttributeName
AND ProfileAttributes.AttributeValue = PassedInAttributeTable.AttributeValue
GROUP BY ProfileID
HAVING COUNT(*) = CountOfRowsInPassedInAttributeTable -- calculate or pass in
) SelectedProfiles ON Profile.ProfileID = SelectedProfiles.ProfileID
... -- Add your paging here
As I recall, this ended up performing very well, even on fairly complicated queries (though I think we only had 12 or so columns).
As a single query, I can't think of a clever way of optimising this.
Provided that each column's check is highly selective, however, the following (very long winded) code, might prove faster, assuming each individual column has it's own separate index...
WITH
filter AS (
SELECT
[a].*
FROM
(SELECT * FROM Profile WHERE #a IS NULL OR a = #a) AS [a]
INNER JOIN
(SELECT id FROM Profile WHERE b = #b UNION ALL SELECT NULL WHERE #b IS NULL) AS [b]
ON ([a].id = [b].id) OR ([b].id IS NULL)
INNER JOIN
(SELECT id FROM Profile WHERE c = #c UNION ALL SELECT NULL WHERE #c IS NULL) AS [c]
ON ([a].id = [c].id) OR ([c].id IS NULL)
.
.
.
INNER JOIN
(SELECT id FROM Profile WHERE zz = #zz UNION ALL SELECT NULL WHERE #zz IS NULL) AS [zz]
ON ([a].id = [zz].id) OR ([zz].id IS NULL)
)
, TempResult as (
SELECT
ROW_NUMBER() OVER(ORDER BY #sortColumn DESC) as RowNum,
[filter].*
FROM
[filter]
)
SELECT
*
FROM
TempResult
WHERE
(RowNum >= #FirstRow)
AND (RowNum <= #LastRow)
EDIT
Also, thinking about it, you may even get the same result just by having the 60 individual indexes. SQL Server can do INDEX MERGING...
You've several issues imho. One is that you're going to end up with a seq scan no matter what you do.
But I think your more crucial issue here is that you've an unnecessary join:
SELECT profile.* FROM TempResult
WHERE
(RowNum >= #FirstRow)
AND
(RowNum <= #LastRow)
This is a classic "SQL Filter" query problem. I've found that the typical approaches of "(#b is null or b = #b)" & it's common derivatives all yeild mediocre performance. The OR clause tends to be the cause.
Over the years I've done a lot of Perf/Tuning & Query Optimisation. The Approach I've found best is to generate Dynamic SQL inside a Stored Proc. Most times you also need to add "with Recompile" on the statement. The Stored Proc helps reduce potential for SQL injection attacks. The Recompile is needed to force the selection of indexes appropriate to the parameters you are searching on.
Generally it is at least an order of magnitude faster.
I agree you should also look at points mentioned above like :-
If you commonly only refer to a small subset of the columns you could create non-clustered "Covering" indexes.
Highly selective (ie:those with many unique values) columns will work best if they are the lead colum in the index.
If many colums have a very small number of values, consider using The BIT datatype. OR Create your own BITMASKED BIGINT to represent many colums ie: a form of "Enumerated datatyle". But be careful as any function in the WHERE clause (like MOD or bitwise AND/OR) will prevent the optimiser from choosing an index. It works best if you know the value for each & can combine them to use an equality or range query.
While often good to find RoWID's with a small query & then join to get all the other columns you want to retrieve. (As you are doing above) This approach can sometimes backfire. If the 1st part of the query does a Clustred Index Scan then often it is faster to get the otehr columns you need in the select list & savethe 2nd table scan.
So always good to try it both ways & see what works best.
Remember to run SET STATISTICS IO ON & SET STATISTICS TIME ON. Before running your tests. Then you can see where the IO is & it may help you with index selection, for the mose frequent combination of paramaters.
I hope this makes sense without long code samples. (it is on my other machine)