My code takes a continuously updating input from raspberry pi, which is then plotted onto a graph. I'm trying to use the legend to display the current frequency (most recent output of y_data) however I can't seem to get it to display. Placing plt.legend() just before plt.show() results in a display, however freezing of the graph. Any help would be greatly appreciated.
import matplotlib
matplotlib.use('qt5agg')
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
import RPi.GPIO as GPIO
import time
import numpy as np
x_data = []
y_data = []
GPIO.setmode(GPIO.BCM)
INPUT_PIN = 26
GPIO.setup(INPUT_PIN, GPIO.IN)
fig, ax = plt.subplots()
line, = plt.plot([],[], 'k-',label = 'data', drawstyle = 'steps')
avr, = plt.plot([],[], 'g--',label = 'mean')
plt.show(block = False)
def update(x_data, y_data, average):
line.set_ydata(y_data)
line.set_xdata(x_data)
avr.set_xdata(x_data)
avr.set_ydata([average]*len(x_data))
fig.canvas.draw()
ax.draw_artist(ax.patch)
ax.draw_artist(line)
ax.draw_artist(avr)
ax.relim()
ax.autoscale_view()
data = round(y_data[-1], 1)
ax.legend((line, avr), (data, 'mean'))
fig.canvas.update()
fig.canvas.flush_events()
while True: #Begin continuous loop
NUM_CYCLES = 10 #Loops to be averaged over
start = time.time()
for impulse_count in range(NUM_CYCLES):
GPIO.wait_for_edge(INPUT_PIN, GPIO.FALLING)
duration = time.time() - start #seconds to run for loop
frequency = NUM_CYCLES / duration #Frequency in Hz
bpm = (frequency/1000)*60 #Frequency / no. of cogs per breath * min
x_data.append(time.time()) #add new data to data lists
y_data.append(bpm)
average = sum(y_data)/float(len(y_data))
update(x_data,y_data, average) #call function to update graph contents
I think you should call fig.canvas.draw() at the end of the update function, not in the middle of it. I'm not sure why you add all the artists again in the update function, so you may leave that out. Concerning the legend, It's probably best to create it once at the beginning and inside the update function only update the relevant text.
Commenting out all the GPIO stuff, this is a version which works fine for me:
import matplotlib
#matplotlib.use('qt5agg')
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
#import RPi.GPIO as GPIO
import time
import numpy as np
x_data = []
y_data = []
#GPIO.setmode(GPIO.BCM)
#INPUT_PIN = 26
#GPIO.setup(INPUT_PIN, GPIO.IN)
fig, ax = plt.subplots()
line, = plt.plot([],[], 'k-',label = 'data', drawstyle = 'steps')
avr, = plt.plot([],[], 'g--',label = 'mean')
# add legend already at the beginning
legend = ax.legend((line, avr), (0.0, 'mean'))
plt.show(block = False)
def update(x_data, y_data, average):
line.set_ydata(y_data)
line.set_xdata(x_data)
avr.set_xdata(x_data)
avr.set_ydata([average]*len(x_data))
#fig.canvas.draw() <- use this at the end
#ax.draw_artist(ax.patch) # useless?
#ax.draw_artist(line) # useless?
#ax.draw_artist(avr) # useless?
ax.relim()
ax.autoscale_view()
data = round(y_data[-1], 1)
# only update legend here
legend.get_texts()[0].set_text(str(data))
#fig.canvas.update() # <- what is this one needed for?
fig.canvas.draw()
fig.canvas.flush_events()
while True: #Begin continuous loop
NUM_CYCLES = 10 #Loops to be averaged over
start = time.time()
#for impulse_count in range(NUM_CYCLES):
# GPIO.wait_for_edge(INPUT_PIN, GPIO.FALLING)
a = np.random.rand(700,800) # <- just something that takes a little time
duration = time.time() - start #seconds to run for loop
frequency = NUM_CYCLES / duration #Frequency in Hz
bpm = (frequency/1000)*60 #Frequency / no. of cogs per breath * min
x_data.append(time.time()) #add new data to data lists
y_data.append(bpm)
average = sum(y_data)/float(len(y_data))
update(x_data,y_data, average) #call function to update graph contents
Add plt.draw() (or fig.canvas.draw_idle() for a more OO approach) at the end of update.
Related
QUESTION: Whats the cleanest and simplest way to use Python's MATPLOTLIB animation function without the use of global array's or constantly appending a global "list of data points" to a plot?
Here is an example of a animated graph that plots the bid and ask sizes of a stock ticker. In this example the variables time[], ask[], and bid[] are used as global variables.
How do we modify the matplotlib animate() function to not use global variables?
so I'm trying to remove "all" global variables and just run one function call...
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
from random import randint
stock = {'ask': 12.82, 'askSize': 21900, 'bid': 12.81, 'bidSize': 17800}
def get_askSize():
return stock["askSize"] + randint(1,9000) # grab a random integer to be the next y-value in the animation
def get_bidSize():
return stock["bidSize"] + randint(1,9000) # grab a random integer to be the next y-value in the animation
def animate(i):
pt_ask = get_askSize()
pt_bid = get_bidSize()
time.append(i) #x
ask.append(pt_ask) #y
bid.append(pt_bid) #y
ax.clear()
ax.plot(time, ask)
ax.plot(time, bid)
ax.set_xlabel('Time')
ax.set_ylabel('Volume')
ax.set_title('ask and bid size')
ax.set_xlim([0,40])
#axis = axis_size(get_bidSize, get_askSize)
ylim_min = (get_askSize() + get_bidSize())/6
ylim_max = (get_askSize() + get_bidSize())
ax.set_ylim([ylim_min,ylim_max])
# create empty lists for the x and y data
time = []
ask = []
bid = []
# create the figure and axes objects
fig, ax = plt.subplots()
# run the animation
ani = FuncAnimation(fig, animate, frames=40, interval=500, repeat=False)
plt.show()
As #Warren mentioned, you can use the fargs parameter to pass in shared variables to be used in your animation function.
You should also precompute all of your points, and then use your frames to merely act as an expanding window on those frames. This will be a much more performant solution and prevents you from needing to convert between numpy arrays and lists on every tick of your animation in order to update the underlying data for your lines.
This also enables you to precompute your y-limits to prevent your resultant plot from jumping all over the place.
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
rng = np.random.default_rng(0)
def animate(i, ask_line, bid_line, data):
i += 1
x = data['x'][:i]
ask_line.set_data(x, data['ask'][:i])
bid_line.set_data(x, data['bid'][:i])
stock = {'ask': 12.82, 'askSize': 21900, 'bid': 12.81, 'bidSize': 17800}
frames = 40
data = {
'x': np.arange(0, frames),
'ask': stock['askSize'] + rng.integers(0, 9000, size=frames),
'bid': stock['bidSize'] + rng.integers(0, 9000, size=frames),
}
fig, ax = plt.subplots()
ask_line, = ax.plot([], [])
bid_line, = ax.plot([], [])
ax.set(xlabel='Time', ylabel='Volume', title='ask and bid size', xlim=(0, 40))
ax.set_ylim(
min(data['ask'].min(), data['bid'].min()),
max(data['ask'].max(), data['bid'].max()),
)
# run the animation
ani = FuncAnimation(
fig, animate, fargs=(ask_line, bid_line, data),
frames=40, interval=500, repeat=False
)
plt.show()
You can use the fargs parameter of FuncAnimation to provide additional arguments to your animate callback function. So animate might start like
def animate(i, askSize, bidSize):
...
and in the call of FuncAnimation, you would add the parameter fargs=(askSize, bidSize). Add whatever variables (in whatever form) that you need to make available within the animate function.
I use this in my example of the use of FuncAnimation with AnimatedPNGWriter in the package numpngw; see Example 8. In that example, my callback function is
def update_line(num, x, data, line):
"""
Animation "call back" function for each frame.
"""
line.set_data(x, data[num, :])
return line,
and FuncAnimation is created with
ani = animation.FuncAnimation(fig, update_line, frames=len(t),
init_func=lambda : None,
fargs=(x, sol, lineplot))
You are using animation wrong, as you are adding and removing lines at each iteration, which makes the animation a lot slower. For line plots, the best way to proceed is:
initialize the figure and axes
initialize empty lines
inside the animate function, update the data of each line.
Something like this:
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
from random import randint
stock = {'ask': 12.82, 'askSize': 21900, 'bid': 12.81, 'bidSize': 17800}
def get_askSize():
return stock["askSize"] + randint(1,9000) # grab a random integer to be the next y-value in the animation
def get_bidSize():
return stock["bidSize"] + randint(1,9000) # grab a random integer to be the next y-value in the animation
def add_point_to_line(x, y, line):
# retrieve the previous data in the line
xd, yd = [list(t) for t in line.get_data()]
# append the new point
xd.append(x)
yd.append(y)
# set the new data
line.set_data(xd, yd)
def animate(i):
pt_ask = get_askSize()
pt_bid = get_bidSize()
# append a new value to the lines
add_point_to_line(i, pt_ask, ax.lines[0])
add_point_to_line(i, pt_bid, ax.lines[1])
# update axis limits if necessary
ylim_min = (get_askSize() + get_bidSize())/6
ylim_max = (get_askSize() + get_bidSize())
ax.set_ylim([ylim_min,ylim_max])
# create the figure and axes objects
fig, ax = plt.subplots()
# create empty lines that will be populated on the animate function
ax.plot([], [])
ax.plot([], [])
ax.set_xlabel('Time')
ax.set_ylabel('Volume')
ax.set_title('ask and bid size')
ax.set_xlim([0,40])
# run the animation
ani = FuncAnimation(fig, animate, frames=40, interval=500, repeat=False)
plt.show()
Using Python matplotlib I would like to plot sensor data over a period of several hours. The signal arrives via an audio card and gets sampled over short chunks of data. In the example below amplitude and RMS is plotted.
In order to plot RMS and other properties over much larger time periods than shown here, perhaps down sampling is needed. I am not sure how to accomplish that and would appreciate any further advice. The intention is to run the code on a Raspberry Pi.
Update 1. A very minimal example is shown for getting a longer time view of RMS.
Noticable is a considerable delay in response to audio signals in particular when adding more plots to the figure.
I also tried using Funcanimation without blitting because I would like to show a real-time axis and this is equally slow. Using PyQT should give better results.
import pyaudio
import struct
import matplotlib.pyplot as plt
import numpy as np
mic = pyaudio.PyAudio()
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 44100
CHUNK = int(RATE/20)
stream = mic.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True,
output=True,
frames_per_buffer=CHUNK)
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)
ax1.set_xlabel("Samples = 2*Chunk length ")
ax1.set_ylabel("Amplitude")
ax1.set_title('Audio example')
fig.tight_layout(pad=3.0)
x = np.arange(0, 2 * CHUNK, 2)
ax1.set_ylim(-10e3, 10e3)
ax1.set_xlim(0, CHUNK)
line1, = ax1.plot(x, np.random.rand(CHUNK))
line2, = ax2.plot(x, np.random.rand(CHUNK))
ts = []
rs = []
while True:
data = stream.read(CHUNK)
data = np.frombuffer(data, np.int16)
d = np.frombuffer(data, np.int16).astype(np.float)
rms2 = np.sqrt( np.mean(d**2) )
#print(rms2)
# Add x and y to lists
ts.append(dt.datetime.now())
rs.append(rms2)
#Draw x and y lists
ax2.clear()
ax2.plot(ts,rs,color= 'black')
# Format plot
ax2.set_xlabel("Time in UTC")
ax2.set_ylabel("RMS values")
ax2.set_title('RMS')
line1.set_ydata(data)
line2.set_ydata(rms2)
plt.setp(ax2.get_xticklabels(), ha="right", rotation=45)
fig.gca().relim()
fig.gca().autoscale_view()
#fig.canvas.draw()
#fig.canvas.flush_events()
plt.pause(0.01)
I am saving two separate figures, that each should contain 2 plots together.
The problem is that the first figure is ok, but the second one, does not gets overwritten on the new plot but on the previous one, but in the saved figure, I only find one of the plots :
This is the first figure , and I get the first figure correctly :
import scipy.stats as s
import numpy as np
import os
import pandas as pd
import openpyxl as pyx
import matplotlib
matplotlib.rcParams["backend"] = "TkAgg"
#matplotlib.rcParams['backend'] = "Qt4Agg"
#matplotlib.rcParams['backend'] = "nbAgg"
import matplotlib.pyplot as plt
import math
data = [336256, 620316, 958846, 1007830, 1080401]
pdf = array([ 0.00449982, 0.0045293 , 0.00455894, 0.02397463,
0.02395788, 0.02394114])
fig, ax = plt.subplots();
fig = plt.figure(figsize=(40,30))
x = np.linspace(np.min(data), np.max(data), 100);
plt.plot(x, s.exponweib.pdf(x, *s.exponweib.fit(data, 1, 1, loc=0, scale=2)))
plt.hist(data, bins = np.linspace(data[0], data[-1], 100), normed=True, alpha= 1)
text1= ' Weibull'
plt.savefig(text1+ '.png' )
datar =np.asarray(data)
mu, sigma = datar.mean() , datar.std() # mean and standard deviation
normal_std = np.sqrt(np.log(1 + (sigma/mu)**2))
normal_mean = np.log(mu) - normal_std**2 / 2
hs = np.random.lognormal(normal_mean, normal_std, 1000)
print(hs.max()) # some finite number
print(hs.mean()) # about 136519
print(hs.std()) # about 50405
count, bins, ignored = plt.hist(hs, 100, normed=True)
x = np.linspace(min(bins), max(bins), 10000)
pdfT = [];
for el in range (len(x)):
pdfTmp = (math.exp(-(np.log(x[el]) - normal_mean)**2 / (2 * normal_std**2)))
pdfT += [pdfTmp]
pdf = np.asarray(pdfT)
This is the second set :
fig, ax = plt.subplots();
fig = plt.figure(figsize=(40,40))
plt.plot(x, pdf, linewidth=2, color='r')
plt.hist(data, bins = np.linspace(data[0], data[-1], 100), normed=True, alpha= 1)
text= ' Lognormal '
plt.savefig(text+ '.png' )
The first plot saves the histogram together with curve. instead the second one only saves the curve
update 1 : looking at This Question , I found out that clearing the plot history will help the figures don't mixed up , but still my second set of plots, I mean the lognormal do not save together, I only get the curve and not the histogram.
This is happening, because you have set normed = True, which means that area under the histogram is normalized to 1. And since your bins are very wide, this means that the actual height of the histogram bars are very small (in this case so small that they are not visible)
If you use
n, bins, _ = plt.hist(data, bins = np.linspace(data[0], data[-1], 100), normed=True, alpha= 1)
n will contain the y-value of your bins and you can confirm this yourself.
Also have a look at the documentation for plt.hist.
So if you set normed to False, the histogram will be visible.
Edit: number of bins
import numpy as np
import matplotlib.pyplot as plt
rand_data = np.random.uniform(0, 1.0, 100)
fig = plt.figure()
ax_1 = fig.add_subplot(211)
ax_1.hist(rand_data, bins=10)
ax_2 = fig.add_subplot(212)
ax_2.hist(rand_data, bins=100)
plt.show()
will give you two plots similar (since its random) to:
which shows how the number of bins changes the histogram.
A histogram visualises the distribution of your data along one dimension, so not sure what you mean by number of inputs and bins.
I'm having issues with redrawing the figure here. I allow the user to specify the units in the time scale (x-axis) and then I recalculate and call this function plots(). I want the plot to simply update, not append another plot to the figure.
def plots():
global vlgaBuffSorted
cntr()
result = collections.defaultdict(list)
for d in vlgaBuffSorted:
result[d['event']].append(d)
result_list = result.values()
f = Figure()
graph1 = f.add_subplot(211)
graph2 = f.add_subplot(212,sharex=graph1)
for item in result_list:
tL = []
vgsL = []
vdsL = []
isubL = []
for dict in item:
tL.append(dict['time'])
vgsL.append(dict['vgs'])
vdsL.append(dict['vds'])
isubL.append(dict['isub'])
graph1.plot(tL,vdsL,'bo',label='a')
graph1.plot(tL,vgsL,'rp',label='b')
graph2.plot(tL,isubL,'b-',label='c')
plotCanvas = FigureCanvasTkAgg(f, pltFrame)
toolbar = NavigationToolbar2TkAgg(plotCanvas, pltFrame)
toolbar.pack(side=BOTTOM)
plotCanvas.get_tk_widget().pack(side=TOP)
You essentially have two options:
Do exactly what you're currently doing, but call graph1.clear() and graph2.clear() before replotting the data. This is the slowest, but most simplest and most robust option.
Instead of replotting, you can just update the data of the plot objects. You'll need to make some changes in your code, but this should be much, much faster than replotting things every time. However, the shape of the data that you're plotting can't change, and if the range of your data is changing, you'll need to manually reset the x and y axis limits.
To give an example of the second option:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 6*np.pi, 100)
y = np.sin(x)
# You probably won't need this if you're embedding things in a tkinter plot...
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x, y, 'r-') # Returns a tuple of line objects, thus the comma
for phase in np.linspace(0, 10*np.pi, 500):
line1.set_ydata(np.sin(x + phase))
fig.canvas.draw()
fig.canvas.flush_events()
You can also do like the following:
This will draw a 10x1 random matrix data on the plot for 50 cycles of the for loop.
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
for i in range(50):
y = np.random.random([10,1])
plt.plot(y)
plt.draw()
plt.pause(0.0001)
plt.clf()
This worked for me. Repeatedly calls a function updating the graph every time.
import matplotlib.pyplot as plt
import matplotlib.animation as anim
def plot_cont(fun, xmax):
y = []
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
def update(i):
yi = fun()
y.append(yi)
x = range(len(y))
ax.clear()
ax.plot(x, y)
print i, ': ', yi
a = anim.FuncAnimation(fig, update, frames=xmax, repeat=False)
plt.show()
"fun" is a function that returns an integer.
FuncAnimation will repeatedly call "update", it will do that "xmax" times.
This worked for me:
from matplotlib import pyplot as plt
from IPython.display import clear_output
import numpy as np
for i in range(50):
clear_output(wait=True)
y = np.random.random([10,1])
plt.plot(y)
plt.show()
I have released a package called python-drawnow that provides functionality to let a figure update, typically called within a for loop, similar to Matlab's drawnow.
An example usage:
from pylab import figure, plot, ion, linspace, arange, sin, pi
def draw_fig():
# can be arbitrarily complex; just to draw a figure
#figure() # don't call!
plot(t, x)
#show() # don't call!
N = 1e3
figure() # call here instead!
ion() # enable interactivity
t = linspace(0, 2*pi, num=N)
for i in arange(100):
x = sin(2 * pi * i**2 * t / 100.0)
drawnow(draw_fig)
This package works with any matplotlib figure and provides options to wait after each figure update or drop into the debugger.
In case anyone comes across this article looking for what I was looking for, I found examples at
How to visualize scalar 2D data with Matplotlib?
and
http://mri.brechmos.org/2009/07/automatically-update-a-figure-in-a-loop
(on web.archive.org)
then modified them to use imshow with an input stack of frames, instead of generating and using contours on the fly.
Starting with a 3D array of images of shape (nBins, nBins, nBins), called frames.
def animate_frames(frames):
nBins = frames.shape[0]
frame = frames[0]
tempCS1 = plt.imshow(frame, cmap=plt.cm.gray)
for k in range(nBins):
frame = frames[k]
tempCS1 = plt.imshow(frame, cmap=plt.cm.gray)
del tempCS1
fig.canvas.draw()
#time.sleep(1e-2) #unnecessary, but useful
fig.clf()
fig = plt.figure()
ax = fig.add_subplot(111)
win = fig.canvas.manager.window
fig.canvas.manager.window.after(100, animate_frames, frames)
I also found a much simpler way to go about this whole process, albeit less robust:
fig = plt.figure()
for k in range(nBins):
plt.clf()
plt.imshow(frames[k],cmap=plt.cm.gray)
fig.canvas.draw()
time.sleep(1e-6) #unnecessary, but useful
Note that both of these only seem to work with ipython --pylab=tk, a.k.a.backend = TkAgg
Thank you for the help with everything.
All of the above might be true, however for me "online-updating" of figures only works with some backends, specifically wx. You just might try to change to this, e.g. by starting ipython/pylab by ipython --pylab=wx! Good luck!
Based on the other answers, I wrapped the figure's update in a python decorator to separate the plot's update mechanism from the actual plot. This way, it is much easier to update any plot.
def plotlive(func):
plt.ion()
#functools.wraps(func)
def new_func(*args, **kwargs):
# Clear all axes in the current figure.
axes = plt.gcf().get_axes()
for axis in axes:
axis.cla()
# Call func to plot something
result = func(*args, **kwargs)
# Draw the plot
plt.draw()
plt.pause(0.01)
return result
return new_func
Usage example
And then you can use it like any other decorator.
#plotlive
def plot_something_live(ax, x, y):
ax.plot(x, y)
ax.set_ylim([0, 100])
The only constraint is that you have to create the figure before the loop:
fig, ax = plt.subplots()
for i in range(100):
x = np.arange(100)
y = np.full([100], fill_value=i)
plot_something_live(ax, x, y)
For years, I've been struggling to get efficient live plotting in matplotlib, and to this day I remain unsatisfied.
I want a redraw_figure function that updates the figure "live" (as the code runs), and will display the latest plots if I stop at a breakpoint.
Here is some demo code:
import time
from matplotlib import pyplot as plt
import numpy as np
def live_update_demo():
plt.subplot(2, 1, 1)
h1 = plt.imshow(np.random.randn(30, 30))
redraw_figure()
plt.subplot(2, 1, 2)
h2, = plt.plot(np.random.randn(50))
redraw_figure()
t_start = time.time()
for i in xrange(1000):
h1.set_data(np.random.randn(30, 30))
redraw_figure()
h2.set_ydata(np.random.randn(50))
redraw_figure()
print 'Mean Frame Rate: %.3gFPS' % ((i+1) / (time.time() - t_start))
def redraw_figure():
plt.draw()
plt.pause(0.00001)
live_update_demo()
Plots should update live when the code is run, and we should see the latest data when stopping at any breakpoint after redraw_figure(). The question is how to best implement redraw_figure()
In the implementation above (plt.draw(); plt.pause(0.00001)), it works, but is very slow (~3.7FPS)
I can implement it as:
def redraw_figure():
plt.gcf().canvas.flush_events()
plt.show(block=False)
And it runs faster (~11FPS), but plots are not up-to date when you stop at breakpoints (eg if I put a breakpoint on the t_start = ... line, the second plot does not appear).
Strangely enough, what does actually work is calling the show twice:
def redraw_figure():
plt.gcf().canvas.flush_events()
plt.show(block=False)
plt.show(block=False)
Which gives ~11FPS and does keep plots up-to-data if your break on any line.
Now I've heard it said that the "block" keyword is deprecated. And calling the same function twice seems like a weird, probably-non-portable hack anyway.
So what can I put in this function that will plot at a reasonable frame rate, isn't a giant kludge, and preferably will work across backends and systems?
Some notes:
I'm on OSX, and using TkAgg backend, but solutions on any backend/system are welcome
Interactive mode "On" will not work, because it does not update live. It just updates when in the Python console when the interpreter waits for user input.
A blog suggested the implementation:
def redraw_figure():
fig = plt.gcf()
fig.canvas.draw()
fig.canvas.flush_events()
But at least on my system, that does not redraw the plots at all.
So, if anybody has an answer, you would directly make me and thousands of others very happy. Their happiness would probably trickle through to their friends and relatives, and their friends and relatives, and so on, so that you could potentially improve the lives of billions.
Conclusions
ImportanceOfBeingErnest shows how you can use blit for faster plotting, but it's not as simple as putting something different in the redraw_figure function (you need to keep track of what things to redraw).
First of all, the code that is posted in the question runs with 7 fps on my machine, with QT4Agg as backend.
Now, as has been suggested in many posts, like here or here, using blit might be an option. Although this article mentions that blit causes strong memory leakage, I could not observe that.
I have modified your code a bit and compared the frame rate with and without the use of blit. The code below gives
28 fps when run without blit
175 fps with blit
Code:
import time
from matplotlib import pyplot as plt
import numpy as np
def live_update_demo(blit = False):
x = np.linspace(0,50., num=100)
X,Y = np.meshgrid(x,x)
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)
img = ax1.imshow(X, vmin=-1, vmax=1, interpolation="None", cmap="RdBu")
line, = ax2.plot([], lw=3)
text = ax2.text(0.8,0.5, "")
ax2.set_xlim(x.min(), x.max())
ax2.set_ylim([-1.1, 1.1])
fig.canvas.draw() # note that the first draw comes before setting data
if blit:
# cache the background
axbackground = fig.canvas.copy_from_bbox(ax1.bbox)
ax2background = fig.canvas.copy_from_bbox(ax2.bbox)
plt.show(block=False)
t_start = time.time()
k=0.
for i in np.arange(1000):
img.set_data(np.sin(X/3.+k)*np.cos(Y/3.+k))
line.set_data(x, np.sin(x/3.+k))
tx = 'Mean Frame Rate:\n {fps:.3f}FPS'.format(fps= ((i+1) / (time.time() - t_start)) )
text.set_text(tx)
#print tx
k+=0.11
if blit:
# restore background
fig.canvas.restore_region(axbackground)
fig.canvas.restore_region(ax2background)
# redraw just the points
ax1.draw_artist(img)
ax2.draw_artist(line)
ax2.draw_artist(text)
# fill in the axes rectangle
fig.canvas.blit(ax1.bbox)
fig.canvas.blit(ax2.bbox)
# in this post http://bastibe.de/2013-05-30-speeding-up-matplotlib.html
# it is mentionned that blit causes strong memory leakage.
# however, I did not observe that.
else:
# redraw everything
fig.canvas.draw()
fig.canvas.flush_events()
#alternatively you could use
#plt.pause(0.000000000001)
# however plt.pause calls canvas.draw(), as can be read here:
#http://bastibe.de/2013-05-30-speeding-up-matplotlib.html
live_update_demo(True) # 175 fps
#live_update_demo(False) # 28 fps
Update:
For faster plotting, one may consider using pyqtgraph.
As the pyqtgraph documentation puts it: "For plotting, pyqtgraph is not nearly as complete/mature as matplotlib, but runs much faster."
I ported the above example to pyqtgraph. And although it looks kind of ugly, it runs with 250 fps on my machine.
Summing that up,
matplotlib (without blitting): 28 fps
matplotlib (with blitting): 175 fps
pyqtgraph : 250 fps
pyqtgraph code:
import sys
import time
from pyqtgraph.Qt import QtCore, QtGui
import numpy as np
import pyqtgraph as pg
class App(QtGui.QMainWindow):
def __init__(self, parent=None):
super(App, self).__init__(parent)
#### Create Gui Elements ###########
self.mainbox = QtGui.QWidget()
self.setCentralWidget(self.mainbox)
self.mainbox.setLayout(QtGui.QVBoxLayout())
self.canvas = pg.GraphicsLayoutWidget()
self.mainbox.layout().addWidget(self.canvas)
self.label = QtGui.QLabel()
self.mainbox.layout().addWidget(self.label)
self.view = self.canvas.addViewBox()
self.view.setAspectLocked(True)
self.view.setRange(QtCore.QRectF(0,0, 100, 100))
# image plot
self.img = pg.ImageItem(border='w')
self.view.addItem(self.img)
self.canvas.nextRow()
# line plot
self.otherplot = self.canvas.addPlot()
self.h2 = self.otherplot.plot(pen='y')
#### Set Data #####################
self.x = np.linspace(0,50., num=100)
self.X,self.Y = np.meshgrid(self.x,self.x)
self.counter = 0
self.fps = 0.
self.lastupdate = time.time()
#### Start #####################
self._update()
def _update(self):
self.data = np.sin(self.X/3.+self.counter/9.)*np.cos(self.Y/3.+self.counter/9.)
self.ydata = np.sin(self.x/3.+ self.counter/9.)
self.img.setImage(self.data)
self.h2.setData(self.ydata)
now = time.time()
dt = (now-self.lastupdate)
if dt <= 0:
dt = 0.000000000001
fps2 = 1.0 / dt
self.lastupdate = now
self.fps = self.fps * 0.9 + fps2 * 0.1
tx = 'Mean Frame Rate: {fps:.3f} FPS'.format(fps=self.fps )
self.label.setText(tx)
QtCore.QTimer.singleShot(1, self._update)
self.counter += 1
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
thisapp = App()
thisapp.show()
sys.exit(app.exec_())
Here's one way to do live plotting: get the plot as an image array then draw the image to a multithreaded screen.
Example using a pyformulas screen (~30 FPS):
import pyformulas as pf
import matplotlib.pyplot as plt
import numpy as np
import time
fig = plt.figure()
screen = pf.screen(title='Plot')
start = time.time()
for i in range(10000):
t = time.time() - start
x = np.linspace(t-3, t, 100)
y = np.sin(2*np.pi*x) + np.sin(3*np.pi*x)
plt.xlim(t-3,t)
plt.ylim(-3,3)
plt.plot(x, y, c='black')
# If we haven't already shown or saved the plot, then we need to draw the figure first...
fig.canvas.draw()
image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
screen.update(image)
#screen.close()
Disclaimer: I'm the maintainer of pyformulas