Maintaining Session across async calls in Mule - mule

I have a specific requirement wherein Mule would be pulling information from provider system and sending it to other system, there are series of such asynchronous calls wherein we have to correlate each messages to a specific user session, can someone throw their insight as how can we maintain session in mule for asynchronous calls? One approach I thought to store it in the DB but it would cause an performance issue. Any thoughts would be highly appreciated.

You can try using Object Stores for that, where each user session can be stored and accessed in the store by an unique id. They can be in-memory or physically persisted (depending on your requirements). Check the Object Store Connector to easily get and store objects from the stores.

Related

Updating OpenFlow group table bucket list in OpenDaylight

I have a mininet (v2.2.2) network with openvswitch (v2.5.2), controlled by OpenDaylight Carbon. My application is an OpenDaylight karaf feature.
The application creates a flow (for multicasts) to a group table (type=all) and adds/removes buckets as needed.
To add/remove buckets, I first check if there is an existing group table:
InstanceIdentifier<Group> groupIid = InstanceIdentifier.builder(Nodes.class)
.child(Node.class, new NodeKey(NodId))
.augmentation(FlowCapableNode.class)
.child(Group.class, grpKey)
.build();
ReadOnlyTransaction roTx = dataBroker.newReadOnlyTransaction();
Future<Optional<Group>> futOptGrp = rwTx.read(LogicalDatastoreType.OPERATIONAL, groupIid);
If it doesn't find the group table, it is created (SalGroupService.addGroup()). If it does find the group table, it is updated (SalGroupService.updateGroup()).
The problem is that it takes some time after the RPC call add/updateGroup() to see the changes in the data model. Waiting for the Future<RPCResult<?>> doesn't guarantee that the data model has the same state as the device.
So, how do I read the group table and bucket list from the data model and make sure that I am indeed reading the same state as the current state of the device?
I know that
Add/UpdateGroupInputBuilder has setTransactionUri()
DataBroker gives transaction to read/write
you should use transaction chaining
But I cannot figure out how to combine these.
Thank you
EDIT: Or do I have to use write transactions in stead of RPC calls?
I dropped using RPC calls for writing flows and switched to using writes to the config datastore. It will still take some time to see the changes appear in the actual device and in the operational datastore but that is ok as long as I use the config datastore for both reads and writes.
However, I have to keep in mind that it is not guaranteed that changes to the config datastore will always make it to the actual device. My flows are not that complicated in the sense that conflicts are unlikely to happen. Still, I will probably check consistency between operational and configuration datastore.

Avoid two-phase commits in a event sourced application saving BLOB data

Let's assume we have an Aggregate User which has a UserPortraitImage and a Contract as a PDF file. I want to store files in a dedicated document-based store and just hold process-relevant data in the event (with a link to the BLOB data).
But how do I avoid a two-phase commit when I have to store the files and store the new event?
At first I'd store the documents and then the event; if the first transaction fails it doesn't matter, the command failed. If the second transaction fails it also doesn't matter even if we generated some dead files in the store, the command fails; we could even apply a rollback.
But could there be an additional problem?
The next question is how to design the aggregate and the event. If the aggregate only holds a reference to the BLOB storage, what is the process after a SignUp command got called?
SignUpCommand ==> Store documents (UserPortraitImage and Contract) ==> Create new User aggregate with the given BLOB storage references and store it?
Is there a better design which unburdens the aggregate of knowing that BLOB data is saved in another store? And who is responsible for storing BLOB data and forwarding the reference to the aggregate?
Sounds like you are working with something analogous to an AtomPub media-entry/media-link-entry pair. The blob is going into your data store, the meta data gets copied into the aggregate history
But how do I avoid a two-phase commit when I have to store the files and store the new event?
In practice, you probably don't.
That is to say, if the blob store and the aggregate store happen to be the same database, then you can update both in the same transaction. That couples the two stores, and adds some pretty strong constraints to your choice of storage, but it is doable.
Another possibility is that you accept that the two changes that you are making are isolated from one another, and therefore that for some period of time the two stores are not consistent with each other.
In this second case, the saga pattern is what you are looking for, and it is exactly what you describe; you pair the first action with a compensating action to take if the second action fails. So "manual" rollback.
Or not - in a sense, the git object database uses a two phase commit; an object gets copied into the object store, and then the trees get updated, and then the commit... garbage collection comes along later to discard the objects that you don't need.
who is responsible for storing BLOB data and forwarding the reference to the aggregate?
Well, ultimately it is an infrastructure concern; does your model actually need to interact with the document, or is it just carrying a claim check that can be redeemed later?
At first I'd store the documents and then the event; if the first
transaction fails it doesn't matter, the command failed. If the second
transaction fails it also doesn't matter even if we generated some
dead files in the store, the command fails; we could even apply a
rollback. But could there be an additional problem?
Not that I can think of, aside from wasted disk space. That's what I typically do when I want to avoid distributed transactions or when they're not available across the two types of data stores. Oftentimes, one of the two operations is less important and you can afford to let it complete even if the master operation fails later.
Cleaning up botched attempts can be done during exception handling, as an out-of-band process or as part of a Saga as #VoiceOfUnreason explained.
SignUpCommand ==> Store documents (UserPortraitImage and Contract) ==>
Create new User aggregate with the given BLOB storage references and
store it?
Yes. Usually the Application layer component (Command handler in your case) acts as a coordinator betweeen the different data stores and gets back all it needs to know from one store before talking to the other or to the Domain.

Are Mule ESB object stores persistent across redeploys?

Mule ESB CE supports object stores, which can be set to persistent. From here I know also, that the stores are application-specific if defined in the application XMLs.
Unfortunately, I was unable to find any information if any data will be lost when:
Mule is restarted
Mule is killed
The application is re-deployed
I'm almost sure that (1) has no impact on the data. I suppose that the object store is also kill-agnostic. What about application being redeployed? I think there are 2 scenarios here:
Object store is defined on app-level
Object store is defined on domain-level
Am I right that in the 1st scenario data will be lost, while the latter will retain the data across application redeploys?
I'm working on Mule 3.5.0 CE.
Any help & references will be appreciated.
For 1,2 and 3 data should be persistent and available upon restart/redeploy etc. The only issue is changing the application name since object stores use the application name as part of the persisted storage information, so if you want the data to be available across redeploys, the newly deployed application must have the same name as the previous one.
In no cases data will be lost from the queue until it's tried (depends upon configuration) and it goes to DLQ.

Is this a good use-case for Redis on a ServiceStack REST API?

I'm creating a mobile app and it requires a API service backend to get/put information for each user. I'll be developing the web service on ServiceStack, but was wondering about the storage. I love the idea of a fast in-memory caching system like Redis, but I have a few questions:
I created a sample schema of what my data store should look like. Does this seems like it's a good case for using Redis as opposed to a MySQL DB or something like that?
schema http://www.miles3.com/uploads/redis.png
How difficult is the setup for persisting the Redis store to disk or is it kind of built-in when you do writes to the store? (I'm a newbie on this NoSQL stuff)
I currently have my setup on AWS using a Linux micro instance (because it's free for a year). I know many factors go into this answer, but in general will this be enough for my web service and Redis? Since Redis is in-memory will that be enough? I guess if my mobile app skyrockets (hey, we can dream right?) then I'll start hitting the ceiling of the instance.
What to think about when desigining a NoSQL Redis application
1) To develop correctly in Redis you should be thinking more about how you would structure the relationships in your C# program i.e. with the C# collection classes rather than a Relational Model meant for an RDBMS. The better mindset would be to think more about data storage like a Document database rather than RDBMS tables. Essentially everything gets blobbed in Redis via a key (index) so you just need to work out what your primary entities are (i.e. aggregate roots)
which would get kept in its own 'key namespace' or whether it's non-primary entity, i.e. simply metadata which should just get persisted with its parent entity.
Examples of Redis as a primary Data Store
Here is a good article that walks through creating a simple blogging application using Redis:
http://www.servicestack.net/docs/redis-client/designing-nosql-database
You can also look at the source code of RedisStackOverflow for another real world example using Redis.
Basically you would need to store and fetch the items of each type separately.
var redisUsers = redis.As<User>();
var user = redisUsers.GetById(1);
var userIsWatching = redisUsers.GetRelatedEntities<Watching>(user.Id);
The way you store relationship between entities is making use of Redis's Sets, e.g: you can store the Users/Watchers relationship conceptually with:
SET["ids:User>Watcher:{UserId}"] = [{watcherId1},{watcherId2},...]
Redis is schema-less and idempotent
Storing ids into redis sets is idempotent i.e. you can add watcherId1 to the same set multiple times and it will only ever have one occurrence of it. This is nice because it means you don't ever need to check the existence of the relationship and can freely keep adding related ids like they've never existed.
Related: writing or reading to a Redis collection (e.g. List) that does not exist is the same as writing to an empty collection, i.e. A list gets created on-the-fly when you add an item to a list whilst accessing a non-existent list will simply return 0 results. This is a friction-free and productivity win since you don't have to define your schemas up front in order to use them. Although should you need to Redis provides the EXISTS operation to determine whether a key exists or a TYPE operation so you can determine its type.
Create your relationships/indexes on your writes
One thing to remember is because there are no implicit indexes in Redis, you will generally need to setup your indexes/relationships needed for reading yourself during your writes. Basically you need to think about all your query requirements up front and ensure you set up the necessary relationships at write time. The above RedisStackOverflow source code is a good example that shows this.
Note: the ServiceStack.Redis C# provider assumes you have a unique field called Id that is its primary key. You can configure it to use a different field with the ModelConfig.Id() config mapping.
Redis Persistance
2) Redis supports 2 types persistence modes out-of-the-box RDB and Append Only File (AOF). RDB writes routine snapshots whilst the Append Only File acts like a transaction journal recording all the changes in-between snapshots - I recommend adding both until your comfortable with what each does and what your application needs. You can read all Redis persistence at http://redis.io/topics/persistence.
Note Redis also supports trivial replication you can read more about at: http://redis.io/topics/replication
Redis loves RAM
3) Since Redis operates predominantly in memory the most important resource is that you have enough RAM to hold your entire dataset in memory + a buffer for when it snapshots to disk. Redis is very efficient so even a small AWS instance will be able to handle a lot of load - what you want to look for is having enough RAM.
Visualizing your data with the Redis Admin UI
Finally if you're using the ServiceStack C# Redis Client I recommend installing the Redis Admin UI which provides a nice visual view of your entities. You can see a live demo of it at:
http://servicestack.net/RedisAdminUI/AjaxClient/

Why does Quartz Scheduler(JobSToreCMT) require the use of two datasources?

I found this annswer:
1. Long answer to Quartz requiring to data sources, however, if you want an even deeper answer, I believe I’ll need to dig into the source code or do more research:
a. JobStoreCMT relies upon transactions being managed by the application which is using Quartz. A JTA transaction must be in progress before attempt to schedule (or unschedule) jobs/triggers. This allows the "work" of scheduling to be part of the applications "larger" transaction. JobStoreCMT actually requires the use of two datasources - one that has it's connection's transactions managed by the application server (via JTA) and one datasource that has connections that do not participate in global (JTA) transactions. JobStoreCMT is appropriate when applications are using JTA transactions (such as via EJB Session Beans) to perform their work. (Ref; http://quartz-scheduler.org/documentation/quartz-1.x/configuration/ConfigJobStoreCMT)
However, there is a believed conflict with a non transactional driver in our particular application. Does anyone know if Quartz (JobsStoreCMT) can just work with just a transactional data source?
Does anyone know if Quartz (JobsStoreCMT) can just work with just a transactional data source?
No you must have a datasource of each type. Invocations on the API by the client application use the connections that are XA-capable, so that the work join's the application's transaction. Work done by the scheduler's internal threads use the non-XA connections.