I have 70 training sample, 10 testing samples, with every sample contains 11*99 elements. I want to use LSTM to classify the testing samples, here is the code:
import tensorflow as tf
import scipy.io as sc
# data read
feature_training = sc.loadmat("feature_training_reshaped.mat")
feature_training_reshaped = feature_training['feature_training_reshaped']
print (feature_training_reshaped.shape)
feature_testing = sc.loadmat("feature_testing_reshaped.mat")
feature_testing_reshaped = feature_testing['feature_testing_reshaped']
print (feature_testing_reshaped.shape)
label_training = sc.loadmat("label_training.mat")
label_training = label_training['aa']
print (label_training.shape)
label_testing = sc.loadmat("label_testing.mat")
label_testing = label_testing['label_testing']
print (label_testing.shape)
a=feature_training_reshaped.reshape([70, 11, 99])
b=feature_testing_reshaped.reshape([10, 11, 99])
print (a.shape)
# hyperparameters
lr = 0.001
training_iters = 1000
batch_size = 70
n_inputs = 99 # MNIST data input (img shape: 11*99)
n_steps = 11 # time steps
n_hidden_units = 128 # neurons in hidden layer
n_classes = 2 # MNIST classes (0-9 digits)
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
# Define weights
weights = {
# (28, 128)
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
# (128, 10)
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
# (128, )
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
# (10, )
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
def RNN(X, weights, biases):
# hidden layer for input to cell
########################################
# all the data in this batch flow into this layer in one time
# transpose the inputs shape from 70batch, 11steps,99inputs
# X ==> (70 batch * 11 steps, 99 inputs)
X = tf.reshape(X, [-1, n_inputs])
# into hidden
# X_in = (70 batch * 11 steps, 99 inputs)
X_in = tf.matmul(X, weights['in']) + biases['in']
# another shape transpose X_in ==> (70 batch, 11 steps, 128 hidden),
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
# cell
##########################################
# basic LSTM Cell.
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
# lstm cell is divided into two parts (c_state, h_state)
##### TAKE Care, batch_size should be 10 when the testing dataset only has 10 data
_init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
print ("_init_state:", _init_state)
# You have 2 options for following step.
# 1: tf.nn.rnn(cell, inputs);
# 2: tf.nn.dynamic_rnn(cell, inputs).
# If use option 1, you have to modified the shape of X_in, go and check out this:
# https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py
# In here, we go for option 2.
# dynamic_rnn receive Tensor (batch, steps, inputs) or (steps, batch, inputs) as X_in.
# Make sure the time_major is changed accordingly.
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)
# outputs size would be a tensor [70,11,128]; size of X_in is (70 batch, 11 steps, 128 hidden)
# final_state size would be [batch_size, outputs],which is [70,128]
print (outputs)
print (final_state)
# hidden layer for output as the final results
#############################################
results = tf.matmul(final_state[1], weights['out']) + biases['out']
# # or
# unpack to list [(batch, outputs)..] * steps
# outputs = tf.unpack(tf.transpose(outputs, [1, 0, 2])) # states is the last outputs
# results = tf.matmul(outputs[-1], weights['out']) + biases['out']
return results
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
step = 0
while step * batch_size < training_iters:
# batch_xs, batch_ys = fea.next_batch(batch_size)
# batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run([train_op], feed_dict={
x: a,
y: label_training,
})
if step % 10 == 0:
print(sess.run(accuracy, feed_dict={
x: b,
y: label_testing,
}))
step += 1
At last, I got the result & error:
(770, 99)
(110, 99)
(70, 2)
(10, 2)
(70, 11, 99)
('_init_state:', LSTMStateTuple(c=<tf.Tensor 'zeros:0' shape=(70, 128) dtype=float32>, h=<tf.Tensor 'zeros_1:0' shape=(70, 128) dtype=float32>))
Tensor("RNN/transpose:0", shape=(70, 11, 128), dtype=float32)
LSTMStateTuple(c=<tf.Tensor 'RNN/while/Exit_2:0' shape=(70, 128) dtype=float32>, h=<tf.Tensor 'RNN/while/Exit_3:0' shape=(70, 128) dtype=float32>)
Traceback (most recent call last):
File "/home/xiangzhang/RNN.py", line 150, in <module>
y: label_testing,
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 717, in run
run_metadata_ptr)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 915, in _run
feed_dict_string, options, run_metadata)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 965, in _do_run
target_list, options, run_metadata)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 985, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [10,128] vs. shape[1] = [70,128]
[[Node: RNN/while/BasicLSTMCell/Linear/concat = Concat[N=2, T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](RNN/while/BasicLSTMCell/Linear/concat/concat_dim, RNN/while/TensorArrayRead, RNN/while/Identity_3)]]
Caused by op u'RNN/while/BasicLSTMCell/Linear/concat', defined at:
File "/home/xiangzhang/RNN.py", line 128, in <module>
pred = RNN(x, weights, biases)
File "/home/xiangzhang/RNN.py", line 110, in RNN
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/rnn.py", line 836, in dynamic_rnn
dtype=dtype)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/rnn.py", line 1003, in _dynamic_rnn_loop
swap_memory=swap_memory)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2518, in while_loop
result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2356, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2306, in _BuildLoop
body_result = body(*packed_vars_for_body)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/rnn.py", line 988, in _time_step
(output, new_state) = call_cell()
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/rnn.py", line 974, in <lambda>
call_cell = lambda: cell(input_t, state)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/rnn_cell.py", line 310, in __call__
concat = _linear([inputs, h], 4 * self._num_units, True)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/rnn_cell.py", line 907, in _linear
res = math_ops.matmul(array_ops.concat(1, args), matrix)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 872, in concat
name=name)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 436, in _concat
values=values, name=name)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 749, in apply_op
op_def=op_def)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2380, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/xiangzhang/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1298, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): ConcatOp : Dimensions of inputs should match: shape[0] = [10,128] vs. shape[1] = [70,128]
[[Node: RNN/while/BasicLSTMCell/Linear/concat = Concat[N=2, T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](RNN/while/BasicLSTMCell/Linear/concat/concat_dim, RNN/while/TensorArrayRead, RNN/while/Identity_3)]]
Process finished with exit code 1
I thought the reason maybe is the testing dataset is only 10, less than batch_size=70, so that when I run the testing dataset, the code _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) would has the unmatch error.
There are two ways to solve it but I don't know how to implement any of it neither:
change the batch_size value, set it as 70 when training, 10 when testing. But, I don't know how to code it, please tell me how to do?
Or, I can set the batch_size=10 , and automatically read the training dataset ten by ten. Also, I don't know how to read next batch in tensorflow automatically, and the command next_batch in MNIST dataset can not work.
The second solution is particular important, please kindly to help me, thanks very much.
Related
I want to build a predictor from a an tf.estimator.Estimator model. Therefore I need to specify a input_receiver_fn that specifies the preprocessing graph from the receiver tensors to the features that will be passed to the model_fn by the predictor.
Here is an example for an eval_input_fn for the Estimator:
def eval_input_fn(params):
ds = tf.data.Dataset.from_generator(
generator=Eval_Generator(params),
output_types=(tf.uint16,tf.uint16),
output_shapes = ([3]+params['crop_size'],[2]+params['crop_size']))
augmentations = [Convert,Downsample,Clip]
ds = ds.repeat()
for augmentation in augmentations:
ds = ds.map(augmentation, num_parallel_calls=params['threads'])
ds = ds.batch(1).prefetch(None)
return ds
I changed the augmentation functions from taking in two arguments (features: tf.Tensor, labels: tf.Tensor) to taking only one argument (features: tf.Tensor) and wrote the according input_receiver_fn that looks like this:
def serving_input_receiver_fn():
rec_raw = tf.placeholder(tf.float32, [3, 256, 256, 256],name='raw')
raw = Convert(rec_raw)
raw = Downsample(raw)
raw = Clip(raw)
raw = tf.expand_dims(raw,0)
return tf.estimator.export.TensorServingInputReceiver(features=raw,receiver_tensors=rec_raw)
The function returns the following object:
TensorServingInputReceiver(features=<tf.Tensor 'ExpandDims_1:0' shape=(1, 3, 128, 128, 128) dtype=float32>, receiver_tensors={'input': <tf.Tensor 'raw:0' shape=(3, 256, 256, 256) dtype=float32>}, receiver_tensors_alternatives=None)
which seems pretty right. But when it try to instantiate the predictor by:
config = tf.estimator.RunConfig(model_dir = params['model_dir'])
estimator = tf.estimator.Estimator(model_fn=model_fn, params=params,config=config)
predict_fn = tf.contrib.predictor.from_estimator(estimator, serving_input_receiver_fn)
I'll get the following error message:
INFO:tensorflow:Calling model_fn.
Traceback (most recent call last):
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 510, in _apply_op_helper
preferred_dtype=default_dtype)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 208, in constant
value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py", line 430, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/contrib/predictor/predictor_factories.py", line 105, in from_estimator
config=config)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/contrib/predictor/core_estimator_predictor.py", line 72, in __init__
serving_input_receiver, estimator, output_key)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/contrib/predictor/core_estimator_predictor.py", line 37, in _get_signature_def
estimator.config)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 235, in public_model_fn
return self._call_model_fn(features, labels, mode, config)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 1195, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/fast/AG_Kainmueller/jrumber/flylight_01/train_tf.py", line 227, in model_fn
gt,fg = tf.unstack(labels,num=2,axis=1)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1027, in unstack
return gen_array_ops.unpack(value, num=num, axis=axis, name=name)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 9429, in unpack
"Unpack", value=value, num=num, axis=axis, name=name)
File "/home/jrumber/anaconda3/envs/tf1.12_gpuenv/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 528, in _apply_op_helper
(input_name, err))
ValueError: Tried to convert 'value' to a tensor and failed. Error: None values not supported.
Since it could be a problem with my model_fn, I'll post it too:
def model_fn(features,labels,mode,params):
gt,fg = tf.unstack(labels,num=2,axis=1)
gt.set_shape([1]+params['input_size'])
fg.set_shape([1]+params['input_size'])
features.set_shape([1,3]+params['input_size'])
# first layer to set input_shape
features = tf.keras.layers.Conv3D(
input_shape = tuple([3]+params['input_size']),
data_format = 'channels_first',
filters = params['chan'],
kernel_size = [3,3,3],
strides=(1, 1, 1),
padding='same',
activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(l=0.01))(features)
# U-Net
out = unet(features, params['unet_initial_filters'], params['width_factor'], params['architecture'])
# Embedding conv pass
output_batched = conv_pass(
out,
kernel_size=1,
num_fmaps=params['chan'],
num_repetitions=1,
activation=None,
name='conv_embedding')
output = tf.squeeze(output_batched)
# Fg/Bg segmentation conv pass
mask_batched = conv_pass(
out,
kernel_size=1,
num_fmaps=1,
num_repetitions=1,
activation='sigmoid',
name='conv_mask')
prob_mask = tf.squeeze(mask_batched)
logits_mask = logit(prob_mask)
# store predictions in dict
predictions = {
'prob_mask': tf.expand_dims(prob_mask,0),
'embedding': output,
'gt': tf.squeeze(gt,0)}
# RAIN mode
if mode == tf.contrib.learn.ModeKeys.TRAIN:
loss , l_var, l_dist, l_reg = discriminative_loss_single(prediction=output,
correct_label=tf.squeeze(gt),
feature_dim=params['chan'],
delta_v= params['delta_v'],
delta_d= params['delta_d'],
param_var= params['param_var'],
param_dist= params['param_dist'],
param_reg= params['param_reg']
)
mask_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.squeeze(fg),
logits=logits_mask))
reg_loss = tf.losses.get_regularization_loss() * 1e-6
loss += mask_loss + reg_loss
opt = tf.train.AdamOptimizer(
learning_rate=0.5e-4,
beta1=0.95,
beta2=0.999,
epsilon=1e-8)
optimizer = opt.minimize(loss, global_step=tf.train.get_global_step())
global_step = tf.Variable(1, name='global_step', trainable=False, dtype=tf.int32)
increment_global_step_op = tf.assign(global_step, global_step+1)
logging_hook = tf.train.LoggingTensorHook({"loss" : loss,'global_step':increment_global_step_op}, every_n_iter=1)
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, loss=loss, train_op=optimizer, training_hooks=[logging_hook])
# PREDICT mode
if mode == tf.estimator.ModeKeys.PREDICT:
export_outputs = {
'predict_output': tf.estimator.export.PredictOutput(predictions)
}
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, export_outputs=export_outputs)
# EVAL mode
if mode == tf.estimator.ModeKeys.EVAL:
export_outputs = {
'eval_output': tf.estimator.export.EvalOutput(predictions)
}
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, export_outputs=export_outputs)
Does anybody spot my mistake here?
Best :)
The error was in the model_fn. The following lines have to be moved down to the # TRAIN mode part of the function
gt,fg = tf.unstack(labels,num=2,axis=1)
gt.set_shape([1]+params['input_size'])
fg.set_shape([1]+params['input_size'])
Estimator.predict will feed only the features and None instead of labels, therefore tf.unstack will throw an exception, so all operations that work on the labels have to be moved to the # train mode part of the model_fn.
I have been getting this error and i cant figure out the reason. if anyone could help would be great.
this is my code:
import numpy as np
import pickle
import os
import download
#from dataset import one_hot_encoded
#from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
from random import shuffle
data_path = "D:/Personal details/Internship/"
# Width and height of each image.
img_size = 32
# Number of channels in each image, 3 channels: Red, Green, Blue.
num_channels = 3
# Length of an image when flattened to a 1-dim array.
img_size_flat = img_size * img_size * num_channels
# Number of classes.
num_classes = 10
# Number of files for the training-set.
_num_files_train = 5
# Number of images for each batch-file in the training-set.
_images_per_file = 10000
def _get_file_path(filename=""):
return os.path.join(data_path, "cifar-10-batches-py/", filename)
def _unpickle(filename):
file_path = _get_file_path(filename)
print("Loading data: " + file_path)
with open(file_path, mode='rb') as file:
# In Python 3.X it is important to set the encoding,
# otherwise an exception is raised here.
data = pickle.load(file, encoding='bytes')
return data
def _convert_images(raw):
# Convert the raw images from the data-files to floating-points.
raw_float = np.array(raw, dtype=float) / 255.0
# Reshape the array to 4-dimensions.
images = raw_float.reshape([-1, num_channels, img_size, img_size])
# Reorder the indices of the array.
images = images.transpose([0, 2, 3, 1])
return images
def _load_data(filename):
# Load the pickled data-file.
data = _unpickle(filename)
# Get the raw images.
raw_images = data[b'data']
# Get the class-numbers for each image. Convert to numpy-array.
cls = np.array(data[b'labels'])
# Convert the images.
images = _convert_images(raw_images)
return images, cls
def load_class_names():
# Load the class-names from the pickled file.
raw = _unpickle(filename="batches.meta")[b'label_names']
# Convert from binary strings.
names = [x.decode('utf-8') for x in raw]
return names
def load_training_data():
images = np.zeros(shape=[_num_images_train, img_size, img_size, num_channels], dtype=float)
cls = np.zeros(shape=[_num_images_train], dtype=int)
# Begin-index for the current batch.
begin = 0
# For each data-file.
for i in range(_num_files_train):
# Load the images and class-numbers from the data-file.
images_batch, cls_batch = _load_data(filename="data_batch_" + str(i + 1))
# Number of images in this batch.
num_images = len(images_batch)
# End-index for the current batch.
end = begin + num_images
# Store the images into the array.
images[begin:end, :] = images_batch
# Store the class-numbers into the array.
cls[begin:end] = cls_batch
# The begin-index for the next batch is the current end-index.
begin = end
return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
def load_test_data():
images, cls = _load_data(filename="test_batch")
return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes)
########################################################################
def one_hot_encoded(class_numbers, num_classes=None):
if num_classes is None:
num_classes = np.max(class_numbers) + 1
return np.eye(num_classes, dtype=float)[class_numbers]
class_names = load_class_names()
images_train, cls_train, labels_train = load_training_data()
images_test, cls_test, labels_test = load_test_data()
images_train_train = images_train[0:45000]
validation_train = images_train[45000:50000]
labels_train_train = labels_train[0:45000]
validation_labels = labels_train[45000:]
print(len(images_train_train))
print(len(validation_train))
##print(class_names)
##print(len(images_train))
##print(cls_train)
##print(labels_train)
##print(cls_test)
##print(labels_test)
n_classes = len(class_names)
batch_size = 128
x = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x')
y = tf.placeholder(tf.float32, shape=[None, n_classes], name='y_true')
def conv2d(x,W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
def convolutional_neural_network(x):
weights = {'W_conv1': tf.Variable(tf.random_normal([3,3,3,64])),
'W_conv2': tf.Variable(tf.random_normal([3,3,64,128])),
'W_conv3': tf.Variable(tf.random_normal([3,3,128,256])),
'W_conv4': tf.Variable(tf.random_normal([3,3,256,256])),
'W_fc1': tf.Variable(tf.random_normal([256,1024])),
'W_fc2': tf.Variable(tf.random_normal([1024,1024])),
'soft_max': tf.Variable(tf.random_normal([1024, n_classes]))}
biases = {'b_conv1': tf.Variable(tf.random_normal([64])),
'b_conv2': tf.Variable(tf.random_normal([128])),
'b_conv3': tf.Variable(tf.random_normal([256])),
'b_conv4': tf.Variable(tf.random_normal([256])),
'b_fc1': tf.Variable(tf.random_normal([1024])),
'b_fc2': tf.Variable(tf.random_normal([1024])),
'soft_max': tf.Variable(tf.random_normal([n_classes]))}
conv1 = tf.nn.relu(conv2d(x, weights['W_conv1']) + biases['b_conv1'])
conv1 = maxpool2d(conv1)
conv2 = tf.nn.relu(conv2d(conv1, weights['W_conv2']) + biases['b_conv2'])
conv2 = maxpool2d(conv2)
conv3 = tf.nn.relu(conv2d(conv2, weights['W_conv3']) + biases['b_conv3'])
conv4 = tf.nn.relu(conv2d(conv3, weights['W_conv4']) + biases['b_conv4'])
conv4 = maxpool2d(conv4)
fc1 = tf.reshape(conv4,[256,-1])
fc1 = tf.nn.relu(tf.matmul(fc1, weights['W_fc1']) + biases['b_fc1'])
fc2 = tf.nn.relu(tf.matmul(fc1, weights['W_fc2'] + biases['b_fc2']))
soft_max = tf.matmul(fc2, weights['soft_max']) + biases['soft_max']
return soft_max
def train_neural_network(x):
prediction = convolutional_neural_network(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits = prediction,labels = y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 3
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(images_train_train):
start = i
end = i+batch_size
batch_x = np.array(images_train_train[start:end])
batch_y = np.array(labels_train_train[start:end])
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:validation_train, y:validation_labels}))
train_neural_network(x)
Ans this is the error i have been getting.
WARNING:tensorflow:From D:/Personal details/Internship/cifar-10v1.0.py:310: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See #{tf.nn.softmax_cross_entropy_with_logits_v2}.
WARNING:tensorflow:From C:\Python35\lib\site-packages\tensorflow\python\util\tf_should_use.py:118: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
Traceback (most recent call last):
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1322, in _do_call
return fn(*args)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1307, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1409, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Matrix size-incompatible: In[0]: [256,2048], In[1]: [256,1024]
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:CPU:0"](Reshape, Variable_4/read)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "D:/Personal details/Internship/cifar-10v1.0.py", line 344, in <module>
train_neural_network(x)
File "D:/Personal details/Internship/cifar-10v1.0.py", line 327, in train_neural_network
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 900, in run
run_metadata_ptr)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1135, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1316, in _do_run
run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1335, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Matrix size-incompatible: In[0]: [256,2048], In[1]: [256,1024]
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:CPU:0"](Reshape, Variable_4/read)]]
Caused by op 'MatMul', defined at:
File "<string>", line 1, in <module>
File "C:\Python35\lib\idlelib\run.py", line 130, in main
ret = method(*args, **kwargs)
File "C:\Python35\lib\idlelib\run.py", line 357, in runcode
exec(code, self.locals)
File "D:/Personal details/Internship/cifar-10v1.0.py", line 344, in <module>
train_neural_network(x)
File "D:/Personal details/Internship/cifar-10v1.0.py", line 309, in train_neural_network
prediction = convolutional_neural_network(x)
File "D:/Personal details/Internship/cifar-10v1.0.py", line 300, in convolutional_neural_network
fc1 = tf.nn.relu(tf.matmul(fc1, weights['W_fc1']) + biases['b_fc1'])
File "C:\Python35\lib\site-packages\tensorflow\python\ops\math_ops.py", line 2122, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 4567, in mat_mul
name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 3392, in create_op
op_def=op_def)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): Matrix size-incompatible: In[0]: [256,2048], In[1]: [256,1024]
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:CPU:0"](Reshape, Variable_4/read)]]
It looks like the problem is in convolutional_neural_network layer() function wherein somehow it is mad at not being able to multiply the same dimension of the matrix. But it is not clear how to solve the issue
Thank you for the help in advance...
After reshaping conv4 at line fc1 = tf.reshape(conv4,[256,-1]), the shape of fc1 is (256, 2048) and the weight matrix W_fc1 has shape (256, 1024). Thus, you get a size incompatible error at the next line fc1 = tf.nn.relu(tf.matmul(fc1, weights['W_fc1']) + biases['b_fc1'])
in the matrix multiplication part. I suggest you to go through the dimensions at every step manually to find errors in future.
I've been working on a simple tensor flow neural network. My input placeholder is
x = tf.placeholder(tf.float32, shape=[None, 52000, 3]).
My weight matrix is initialized to all zeros as
W = tf.Variable(tf.zeros([52000, 10])).
I tried different combinations with and without the 3 for color channels, but I guess I'm just not understanding the dimensionality because I got the error:
Traceback (most recent call last): File
"C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py",
line 686, in _call_cpp_shape_fn_impl
input_tensors_as_shapes, status) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py",
line 473, in exit
c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape
must be rank 2 but is rank 3 for 'MatMul' (op: 'MatMul') with input
shapes: [?,52000,3], [52000,10].
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "rating.py", line 65, in
y = tf.matmul(x, W) + b # "fake" outputs to train/test File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\math_ops.py",
line 1891, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) File
"C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_math_ops.py",
line 2436, in _mat_mul
name=name) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py",
line 787, in _apply_op_helper
op_def=op_def) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py",
line 2958, in create_op
set_shapes_for_outputs(ret) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py",
line 2209, in set_shapes_for_outputs
shapes = shape_func(op) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py",
line 2159, in call_with_requiring
return call_cpp_shape_fn(op, require_shape_fn=True) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py",
line 627, in call_cpp_shape_fn
require_shape_fn) File "C:\Users\Everybody\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py",
line 691, in _call_cpp_shape_fn_impl
raise ValueError(err.message) ValueError: Shape must be rank 2 but is rank 3 for 'MatMul' (op: 'MatMul') with input shapes: [?,52000,3],
[52000,10].
At first, I thought my next_batch() function was the culprit because I had to make my own due to the fact that I uploaded my images "manually" using scipy.misc.imread(), whose definition reads:
q = 0
def next_batch(batch_size):
x = images[q:q + batch_size]
y = one_hots[q:q + batch_size]
q = (q + batch_size) % len(images)
return x, y
However, after looking through, I don't see what's wrong with this, so I imagine that I'm just confused about dimensionality. It is supposed to be a "flattened" 200x260 color image. It just occurred to me now that maybe I have to flatten the color channels as well? I will place my full code below if curious. I'm a bit new to Tensorflow, so thanks, all. (Yes, it is not a CNN yet, I decided to start simple just to make sure I'm importing my dataset right. And, I know it is tiny, I'm starting my dataset small too.)
############# IMPORT DEPENDENCIES ####################################
import tensorflow as tf
sess = tf.InteractiveSession() #start session
import scipy.misc
import numpy as np
######################################################################
#SET UP DATA #########################################################
images = []
one_hots = []
########### IMAGES ##################################################
#put all the images in a list
for i in range(60):
images.append(scipy.misc.imread('./shoes/%s.jpg' % str(i+1)))
print("One image appended...\n")
#normalize them, "divide" by 255
for image in images:
print("One image normalized...\n")
for i in range(260):
for j in range(200):
for c in range(3):
image[i][j][c]/=255
for image in images:
tf.reshape(image, [52000, 3])
########################################################################
################# ONE-HOT VECTORS ######################################
f = open('rateVectors.txt')
lines = f.readlines()
for i in range(0, 600, 10):
fillerlist = []
for j in range(10):
fillerlist.append(float(lines[i+j][:-1]))
one_hots.append(fillerlist)
print("One one-hot vector added...\n")
########################################################################3
#set placeholders and such for input, output, weights, biases
x = tf.placeholder(tf.float32, shape=[None, 52000, 3])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([52000, 10])) # These are our weights and biases
b = tf.Variable(tf.zeros([10])) # initialized as zeroes.
#########################################################################
sess.run(tf.global_variables_initializer()) #initialize variables in the session
y = tf.matmul(x, W) + b # "fake" outputs to train/test
##################### DEFINING OUR MODEL ####################################
#our loss function
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))
#defining our training as gradient descent
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
###################### TRAINING #############################################
#################### OUR CUSTOM BATCH FUNCTION ##############################
q = 0
def next_batch(batch_size):
x = images[q:q + batch_size]
y = one_hots[q:q + batch_size]
q = (q + batch_size) % len(images)
return x, y
#train
for i in range(6):
batch = next_batch(10)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
print("Batch Number: " + i + "\n")
print("Done training...\n")
################ RESULTS #################################################
#calculating accuracy
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#print accuracy
print(accuracy.eval(feed_dict={x: images, y_: one_hots}))
Your placeholder should have the dimension [None, 200, 260, 3] where None is the batch size, 200, 260 is the image size, and 3 is the channels.
Your weights should be [filter_height, filter_width, num_channels, num_filters]
Your bias should be [num_filters]
And the dimensions for the labels should be [None, num_classes] where None is the batch size, and num_classes is the number of classes that your images have.
These are just to make sure that math works.
I took these codes from here
I'm getting an incompatible shape error when trying trying to add a CNN to a ready siamese code that I got from github : here is the link :
https://github.com/ywpkwon/siamese_tf_mnist
here is the code for running the session:
""" Siamese implementation using Tensorflow with MNIST example.
This siamese network embeds a 28x28 image (a point in 784D)
into a point in 2D.
By Youngwook Paul Kwon (young at berkeley.edu)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
#import system things
from tensorflow.examples.tutorials.mnist import input_data # for data
import tensorflow as tf
import numpy as np
import os
#import helpers
import inference
import visualize
# prepare data and tf.session
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
sess = tf.InteractiveSession()
# setup siamese network
siamese = inference.siamese();
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(siamese.loss)
saver = tf.train.Saver()
tf.initialize_all_variables().run()
# start training
if new:
for step in range(1000):
batch_x1, batch_y1 = mnist.train.next_batch(128)
batch_x2, batch_y2 = mnist.train.next_batch(128)
batch_y = (batch_y1 == batch_y2).astype('float')
_, loss_v = sess.run([train_step, siamese.loss], feed_dict={
siamese.x1: batch_x1,
siamese.x2: batch_x2,
siamese.y_: batch_y})
if step % 10 == 0:
print ('step %d: loss' % (step))
print (loss_v)
here is the code for creating the Siamese model.
import tensorflow as tf
class siamese:
# Create model
def __init__(self):
self.x1 = tf.placeholder(tf.float32, [None, 784])
self.x2 = tf.placeholder(tf.float32, [None, 784])
with tf.variable_scope("siamese") as scope:
self.o1 = self.network(self.x1)
scope.reuse_variables()
self.o2 = self.network(self.x2)
# Create loss
self.y_ = tf.placeholder(tf.float32, [None])
self.loss = self.loss_with_step()
def network(self, x):
weights = []
fc1 = self.fc_layer(x, 1024, "fc1" , [5, 5, 1, 32])
return fc1
def fc_layer(self, bottom, n_weight, name,kernel_shape ): #[5, 5, 1, 32]
assert len(bottom.get_shape()) == 2
#n_prev_weight = bottom.get_shape()[1]
initer = tf.truncated_normal_initializer(stddev=0.01)
weights_for_convolution = tf.get_variable(name+"weights_for_convolution", kernel_shape,
initializer=tf.random_normal_initializer())
bias_shape = kernel_shape[-1]
biases_for_convolution = tf.get_variable(name+"biases_for_convolution", [bias_shape],
initializer=tf.constant_initializer(0.1))
biases_for_connected_layer = tf.get_variable(name+"biases_for_connected_layer", [1024],
initializer=tf.constant_initializer(0.1))
weights_for_connected_layer = tf.get_variable(name+"weights_for_connected_layer", [7*7*64,1024],
initializer=tf.random_normal_initializer())
W = tf.get_variable(name+'W', dtype=tf.float32, shape=[1024,2], initializer=initer)
b = tf.get_variable(name+'b', dtype=tf.float32, initializer=tf.constant(0.01, shape=[2], dtype=tf.float32))
#weights_for_readout_layer = tf.get_variable("weights_for_readout_layer", [1024,2],
#initializer=tf.random_normal_initializer())
#biases_for_readout_layer = tf.get_variable("biases_for_readout_layer", [2],
#initializer=tf.constant_initializer(0.1))
bottom1 = tf.reshape(bottom,[-1,28,28,1]) ##
c2 = tf.nn.conv2d(bottom1, weights_for_convolution, strides=[1, 1, 1, 1], padding='SAME')
conv = tf.nn.bias_add(c2, biases_for_convolution)
relu = tf.nn.relu(conv)
out = tf.nn.max_pool(relu, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
#print tf.shape(out)
h_out_flat = tf.reshape(out ,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_out_flat, weights_for_connected_layer) + biases_for_connected_layer)
#compute model output
final_output = tf.matmul(h_fc1,W) + b
#fc = tf.nn.bias_add(tf.matmul(bottom, W), b)
return final_output
def loss_with_spring(self):
margin = 5.0
labels_t = self.y_
labels_f = tf.subtract(1.0, self.y_, name="1-yi") # labels_ = !labels;
eucd2 = tf.pow(tf.subtract(self.o1, self.o2), 2)
print tf.shape(eucd2)
eucd2 = tf.reduce_sum(eucd2, 1)
eucd = tf.sqrt(eucd2+1e-6, name="eucd")
C = tf.constant(margin, name="C")
# yi*||CNN(p1i)-CNN(p2i)||^2 + (1-yi)*max(0, C-||CNN(p1i)-CNN(p2i)||^2)
pos = tf.multiply(labels_t, eucd2, name="yi_x_eucd2")
# neg = tf.multiply(labels_f, tf.subtract(0.0,eucd2), name="yi_x_eucd2")
# neg = tf.multiply(labels_f, tf.maximum(0.0, tf.subtract(C,eucd2)), name="Nyi_x_C-eucd_xx_2")
neg = tf.multiply(labels_f, tf.pow(tf.maximum(tf.subtract(C, eucd), 0), 2), name="Nyi_x_C-eucd_xx_2")
losses = tf.add(pos, neg, name="losses")
loss = tf.reduce_mean(losses, name="loss")
return loss
def loss_with_step(self):
margin = 5.0
labels_t = self.y_ #128
labels_f = tf.subtract(1.0, self.y_, name="1-yi") # labels_ = !labels;
eucd2 = tf.pow(tf.subtract(self.o1, self.o2), 2)
eucd2 = tf.reduce_sum(eucd2, 1)
eucd = tf.sqrt(eucd2+1e-6, name="eucd")
C = tf.constant(margin, name="C")
pos = tf.multiply(labels_t, eucd, name="y_x_eucd")
neg = tf.multiply(labels_f, tf.maximum(0.0, tf.subtract(C, eucd)), name="Ny_C-eucd")
losses = tf.add(pos, neg, name="losses")
loss = tf.reduce_mean(losses, name="loss")
return loss
Actually as the batch size is 128 label-t is 128,
the problem here is that the euclidean distance in the loss_with_step function,
as well as in the loss_with_spring function is of size 256 and not 128 I don't really know why!
here is the error I get.
Traceback (most recent call last):
File "run1.py", line 56, in <module>
siamese.y_: batch_y})
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/client/session.py", line 997, in _run
feed_dict_string, options, run_metadata)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/client/session.py", line 1132, in _do_run
target_list, options, run_metadata)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/client/session.py", line 1152, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [128] vs. [256]
[[Node: y_x_eucd = Mul[T=DT_FLOAT, _device="/job:localhost/ replica:0/task:0/cpu:0"](_arg_Placeholder_2_0_2, eucd)]]
Caused by op u'y_x_eucd', defined at:
File "run1.py", line 28, in <module>
siamese = inference1.siamese();
File "/home/sudonuma/Documents/siamese for mnist/siamese_tf_mnist-master /inference1.py", line 18, in __init__
self.loss = self.loss_with_step()
File "/home/sudonuma/Documents/siamese for mnist/siamese_tf_mnist-master /inference1.py", line 110, in loss_with_step
pos = tf.multiply(labels_t, eucd, name="y_x_eucd")
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/ops/math_ops.py", line 286, in multiply
return gen_math_ops._mul(x, y, name)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/ops/gen_math_ops.py", line 1377, in _mul
result = _op_def_lib.apply_op("Mul", x=x, y=y, name=name)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/framework/op_def_library.py", line 767, in apply
_op
op_def=op_def)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/framework/ops.py", line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/sudonuma/anaconda2/envs/tensorflow/lib/python2.7/site- packages/tensorflow/python/framework/ops.py", line 1269, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Incompatible shapes: [128] vs. [256]
[[Node: y_x_eucd = Mul[T=DT_FLOAT, _device="/job:localhost /replica:0/task:0/cpu:0"](_arg_Placeholder_2_0_2, eucd)]]
can anyone help?
Looks like your reshaping after the convolution is wrong. The output of the convolution layer would be 14x14x32 for a 28x28x1 input passed through conv(stride=1)-maxpool(stride 2). So you need to change the flatten layer to :
h_out_flat = tf.reshape(out ,[-1,14*14*32])
and also the weights_for_connected_layer appropriately.
I got unexpected error when running below code :
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
mean_loss = 0
for step in xrange(num_steps) :
print ("Train data ",len(train_data))
batch_inputs, batch_labels = generate_batches(train_dataset, batch_size=64, unrollings=5)
feed_dict = dict()
for i in range(unrollings):
batch_labels[i] = np.reshape(batch_labels[i], (batch_size, 1))
batch_inputs[i] = np.array(batch_inputs[i]).astype('int32')
batch_labels[i] = batch_labels[i].astype('float32')
print (train_inputs[i], train_labels[i])
feed_dict = {train_inputs[i] : batch_inputs[i], train_labels[i] : batch_labels[i]}
_, l, predictions, lr = session.run([optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict)
mean_loss += l
Here is the generating batches, lstm cell and calculating loss code :
def generate_batches(raw_data, batch_size, unrollings):
global data_index
data_len = len(raw_data)
num_batches = data_len // batch_size
inputs = []
labels = []
label = np.zeros(shape=(batch_size, 1), dtype=np.float)
print (num_batches, data_len, batch_size)
for j in xrange(unrollings) :
inputs.append([])
labels.append([])
for i in xrange(batch_size) :
inputs[j].append(raw_data[i + data_index])
label[i, 0] = raw_data[i + data_index + 1]
data_index = (data_index + 1) % len(raw_data)
print (len(inputs), len(inputs[0]), len(labels), label.shape)
labels[j].append(label.tolist())
return inputs, labels
embedding_size = 128
num_nodes = 32
graph = tf.Graph()
with graph.as_default():
# Parameters:
# Input,Forget,Candidate,Output gate: input, previous output, and bias.
ifcox = tf.Variable(tf.truncated_normal([embedding_size, num_nodes*4], -0.1, 0.1))
ifcom = tf.Variable(tf.truncated_normal([num_nodes, num_nodes*4], -0.1, 0.1))
ifcob = tf.Variable(tf.zeros([1, num_nodes*4]))
# Variables saving state across unrollings.
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
# Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, 1], -0.1, 0.1))
b = tf.Variable(tf.zeros([1]))
# Definition of the cell computation.
def lstm_cell(i, o, state):
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, i)
i = tf.to_float(embed)
print (i.get_shape())
combined = tf.matmul(i, ifcox) + tf.matmul(o, ifcom) + ifcob
input_gate = tf.sigmoid(combined[:, 0:num_nodes])
forget_gate = tf.sigmoid(combined[:, num_nodes:2*num_nodes])
update = tf.sigmoid(combined[:, 2*num_nodes:3*num_nodes])
state = forget_gate * state + input_gate * tf.tanh(update)
output_gate = tf.sigmoid(combined[:, 3*num_nodes:4*num_nodes])
return output_gate * tf.tanh(state), state
train_data = list()
train_label = list()
for _ in range(unrollings) :
train_data.append(tf.placeholder(shape=[batch_size], dtype=tf.int32))
train_label.append(tf.placeholder(shape=[batch_size, 1], dtype=tf.float32))
train_inputs = train_data[:unrollings]
train_labels = train_label[:unrollings]
print (train_inputs, train_labels)
outputs = list()
output = saved_output
state = saved_state
for i in train_inputs :
output, state = lstm_cell(i, output, state)
outputs.append(output)
# State saving across unrollings.
with tf.control_dependencies([saved_output.assign(output),saved_state.assign(state)]):
# Classifier.
logits = tf.nn.xw_plus_b(tf.concat(0, outputs), w, b)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf.to_float(tf.concat(0, train_labels))))
# Optimizer.
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(10.0, global_step, 5000, 0.1, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 1.25)
optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step
The error :
tensorflow/core/framework/op_kernel.cc:940] Invalid argument: You must feed a value for placeholder tensor 'Placeholder_3' with dtype float and shape [64,1]
[[Node: Placeholder_3 = Placeholder[dtype=DT_FLOAT, shape=[64,1], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Traceback (most recent call last):
File "ptb_rnn.py", line 232, in <module>
_, l, predictions, lr = session.run([optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 710, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 908, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 958, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 978, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_3' with dtype float and shape [64,1]
[[Node: Placeholder_3 = Placeholder[dtype=DT_FLOAT, shape=[64,1], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'Placeholder_3', defined at:
File "ptb_rnn.py", line 163, in <module>
train_label.append(tf.placeholder(shape=[batch_size, 1], dtype=tf.float32))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 1212, in placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 1530, in _placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2317, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1239, in __init__
self._traceback = _extract_stack()
It looks like I am not feeding using feed_dict the value to the tensor train_labels[i] with size (64, 1). But when I print using batch_labels[i].shape I get size (64,1) and dtype of both is float32.
The train_input has size (64,) and batch_inputs also has size (64, ) and both of same dtype.
So, where is the error in my code?
P.S. I think the error is in line where I am reshaping batch_labels batch_labels[i] = np.reshape(batch_labels[i], (batch_size, 1)). Is that the dimension or rank gets changed ? That could be one reason that train_labels[i] does not accept the size of batch_labels as (64, 1) as its dimension and rank may not be the same.As 3-d batch_labels[i] gets converted to 2-d (batch_size, 1) so does the rank increase? Below is generating batch output of 1 unrolling : ([9976, 9980, 9981, 9982, 9983, 9984, 9986, 9987, 9988, 9989, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999, 2, 9256, 1, 3, 72, 393, 33, 2133, 0, 146, 19, 6, 9207, 276, 407, 3, 2, 23, 1, 13, 141, 4, 1, 5465, 0, 3081, 1596, 96, 2, 7682, 1, 3, 72, 393, 8, 337, 141, 4, 2477, 657, 2170, 955, 24, 521, 6], [[[9980.0], [9981.0], [9982.0], [9983.0], [9984.0], [9986.0], [9987.0], [9988.0], [9989.0], [9991.0], [9992.0], [9993.0], [9994.0], [9995.0], [9996.0], [9997.0], [9998.0], [9999.0], [2.0], [9256.0], [1.0], [3.0], [72.0], [393.0], [33.0], [2133.0], [0.0], [146.0], [19.0], [6.0], [9207.0], [276.0], [407.0], [3.0], [2.0], [23.0], [1.0], [13.0], [141.0], [4.0], [1.0], [5465.0], [0.0], [3081.0], [1596.0], [96.0], [2.0], [7682.0], [1.0], [3.0], [72.0], [393.0], [8.0], [337.0], [141.0], [4.0], [2477.0], [657.0], [2170.0], [955.0], [24.0], [521.0], [6.0], [9207.0]]])