Google CloudSQL or BigQuery for Big Data Actively Update Every Second - google-bigquery

So now I'm currently using Google CloudSQL for my needs.
I'm collecting data from user activities. Every day the number of rows in my table will increase around 9-15 million rows and always updated every second. The data including several main parameters like user locations (latitude longitude), timestamp, user activities and conversations and more.
I need to constantly access a lot of insight from this user activities, like "how many users between latitude-longitude A and latitude-longitude B who use my app per hour since 30 days ago?".
Because my table become bigger every day, it's hard to manage the performance of select query in my table. (I already implemented the indexing method in my table especially for most common use parameter)
All my data insert, select, update and more is executed from API that I code in PHP.
So my question is can I get much more better benefit if I use Google BigQuery for my needs?
If yes, how can I do this? Because is Google BigQuery (forgive my if I'm wrong) designed to be used for static data? (Not a constantly update data)? How can I connect my CloudSQL data into BigQuery in real time?
Which one is better: optimizing my table in CloudSQL to maximize the select process or use BigQuery (if possible)
I also open for another alterntive or sugget to optimize my CloudSQL performance :)
Thank you

Sounds like BigQuery would be far better suited your use case. I can think of a good solution:
Migrate existing data from CloudSQL to BigQuery.
Stream events directly to BigQuery (using a async queue).
Use time partitioned table in BigQuery.
If you use BigQuery, you don't need to worry about performance or scaling. That's all handled for you by Google.

Related

Usecase for BIgQuery as a database backend for website thoughts

members,
Currently we synchronise salesdata into BigQuery, and it allows us to make fast, detailed, practically realtime reports of all kinds of stats that we otherwise would not have available. We want to have a website that is able to use these reports and present this information to website-users.
Some specs:
Users are using the data as 'readonly'
We want to do the analysis 'on request', so as soon as a user opens the page, we would query BigQuery and the user would see their stats depending on the query
The stats could change for external sources but often the result will be equal, I take into my mind that BigQuery would cache the query
The average query processes about 100Mb of data, it takes >2 seconds for the whole backend to respond (so user request, query, return resultset) so performance is what we want
Why I doubt:
BigQuery would not be adviced
Could it run 'out of hand'
Dataset will grow bigger, but we will need to keep using all historical data in any case
I would be an option to get aggregated data into another database for doing the main calls, but that would give me not a 'realtime' experience.
I would love to hear your thoughts.
As per your requirement, you can consider Bigquery as an option since Bigquery is fully managed and supports analytics over petabyte-scale data, it will be able to handle large amounts of data. Bigquery is specially designed for performing OLAP transactions so analysis can be performed on requests. Bigquery uses cached query results through which you can cache the query and fetch results quickly.
If your dataset is very large and grows then you can create partitioned tables to store and manage your data and easily query the tables. Since your data can go out of hand, Bigquery being a fully managed service will automatically handle that load. Historical data can be stored and accessed but for that you can set the expiration time of the table and also check the optimized storage according to your requirement.

Allowing many users to view stale BigQuery data query results concurrently

If I have a BigQuery dataset with data that I would like to make available to 1000 people (where each of these people would only be allowed to view their subset of the data, and is OK to view a 24hr stale version of their data), how can I do this without exceeding the 50 concurrent queries limit?
In the BigQuery documentation there's mention of 50 concurrent queries being permitted which give on-the-spot accurate data, which I would surpass if I needed them to all be able to view on-the-spot accurate data - which I don't.
In the documentation there is mention of Batch jobs being permitted and saving of results into destination tables which I'm hoping would somehow allow a reliable solution for my scenario, but am having difficulty finding information on how reliably or frequently those batch jobs can be expected to run, and whether or not someone querying results that exist in those destination tables is in itself counting towards the 50 concurrent users limit.
Any advice appreciated.
Without knowing the specifics of your situation and depending on how much data is in the output, I would suggest putting your own cache in front of BigQuery.
This sounds kind of like a dashboading/reporting solution, so I assume there is a large amount of data going in and a relatively small amount coming out (per-user).
Run one query per day with a batch script to generate your output (grouped by user) and then export it to GCS. You can then break it up into multiple flat files (or just read it into memory on your frontend). Each user hits your frontend, you determine which part of the output to serve up to them and respond.
This should be relatively cheap if you can work off the cached data and it is small enough that handling the BigQuery output isn't too much additional processing.
Google Cloud Functions might be an easy way to handle this, if you don't want the extra work of setting up a new VM to host your frontend.

De-duplicating BigQuery in an Asynchronous Real Time ETL Pipeline

Our Data Warehouse team is evaluating BigQuery as a Data Warehouse column store solution and had some questions regarding its features and best use. Our existing etl pipeline consumes events asynchronously through a queue and persists the events idempotently into our existing database technology. The idempotent architecture allows us to on occasion replay several hours or days of events to correct for errors and data outages with no risk of duplication.
In testing BigQuery, we've experimented with using the real time streaming insert api with a unique key as the insertId. This provides us with upsert functionality over a short window, but re-streams of the data at later times result in duplication. As a result, we need an elegant option for removing dupes in/near real time to avoid data discrepancies.
We had a couple questions and would appreciate answers to any of them. Any additional advice on using BigQuery in ETL architecture is also appreciated.
Is there a common implementation for de-duplication of real time
streaming beyond the use of the tableId?
If we attempt a delsert (via an delete followed by an insert using
the BigQuery API) will the delete always precede the insert, or do
the operations arrive asynchronously?
Is it possible to implement real time streaming into a staging
environment, followed by a scheduled merge into the destination
table? This is a common solution for other column store etl
technologies but we have seen no documentation suggesting its use in
BigQuery.
We let duplication happen, and write our logic and queries in a such way that every entity is a streamed data. Eg: a user profile is a streamed data, so there are many rows placed in time and when we need to pick the last data, we use the most recent row.
Delsert is not suitable in my opinion as you are limited to 96 DML statements per day per table. So this means you need to temp store in a table batches, for later to issue a single DML statement that deals with a batch of rows, and updates a live table from the temp table.
If you consider delsert, maybe it's easier to consider writing a query to only read most recent row.
Streaming followed by scheduled merge is possible. Actually you can rewrite some data in the same table, eg: removing dups. Or scheduled query batch content from temp table and write to live table. This is somehow the same as let duplicate happening and later deal within a query with it, also called re-materialization if you write to the same table.

bigquery with a large number of tables

I know there has already been a question regarding the table number limits, but it was vague...
In a dataset I want to create about 1-2 milion tables. This happens because I want to split my users activity table into smaller tables; for each user a table. And in time this number will keep on growing.
As I understand there will be no problem from BigQuery's perpective...but i'm concerned that I will not be able to access (list) those datasets from browser (https://bigquery.cloud.google.com/queries/appname); because the tables are not grouped by time (like in the case of tables with timerange) and they get all listed in an endless scroll (possibly blocking the browser)
Thank you for any suggestions
… the problem is that the browser will get blocked while listing all
tables in the dataset
You can use the "?minimal" parameter to limit the load operation to 30,000 tables per project, so browser will not be blocked. For example:
https://bigquery.cloud.google.com/queries/<your_project_name>?minimal.
see more about Display limits
I can't easily explore my dataset because of this (and query them)
If you are planning to have 2+ million tables in same dataset, even if Web UI were to show them to you without being blocked - I really doubt you would be able to somehow reasonably visually explore them. Just too many objects to “swallow”
Btw, this is not only human specific issue - even querying such "long" tables list programmatically can be problematic. See more about Using meta-tables
because the tables are not grouped by time (like in the case of tables with timerange) and they get all listed in an endless scroll (possibly blocking the browser)
That’s right, in BigQuery Web UI tables will be grouped only if they follow table_preffixYYYYMMDD pattern. Even if you would map your userID namespace to YYYYMMDD value – you would still be out of luck as your group still will consists of those millions tables.
Thank you for any suggestions
BigQuery supports Partitioned Tables which allows to have multiple partitions in the same table. Unfortunately, as of today, only Date-Partitioned tables are supported, but from what I heard BigQuery Team plans to add partitioning by arbitrary column.
This would probably fit to your desired design, unless there will be a limitation to column cardinality.
Meantime, if you want, you can experiment with applying your design using date-partitioned tables feature by mapping userid to YYYYMMDD (~9999*12*30 >> 3+ million users)
My recommendation:
Play/experiment with partitioned tables as I suggested in previous (above) section
Sharding (splitting) tables in BigQuery to millions of tables sound to me extremely impractical. You should revisit your design. What it is that you are trying to address by such sharding? Try to focus on this and if needed - post specific question here on SO!
As an alternative solution for this you can use Google cloud sdk client.
You can read the documentation for this bq Command-Line tool here.
eg: bq ls [project_id:][dataset_id] to list all tables.
NOTE: Maximum tables per query is limited to 1000. Refer

Big query is to slow

I am just starting with biquery, my DB is small (10K of rows 1 table) and my queries are simple count and group by.
Its takes and average of 3-4 sec per request but sometimes its jumps to 10 and event 15sec
I am querying from amazon linux server in Irland using the BQ tool.
Is it possible to get results faster (under 1sec) so I will be able to present my webpages faster.
1) Big Query is a highly scalable database, before being a "super fast" database. It's designed to process HUGE amount of data distributing the processing among several different machines using a technique named Dremel. Because it's designed to use several machines and parallel processing, you should expect to have super-scalability with a good performance.
2) BigQuery is an asset when you want to analyze billions of rows.
For example: analyzing all the wikipedia revisions in 5-10 seconds isn't bad, is it? But even a much smaller table would take about the same time, even if has 10k rows.
3) Under this size, you'll be better off using more traditional data storage solutions such as Cloud SQL or the App Engine Datastore. If you want to keep SQL capability, Cloud SQL is the best guess.
Sybase IQ is often installed in a single database and it doesn't use Dremel. That said, it's going to be faster than Big Query in many scenarios...as designed.
4) Certainly the performance differ from a dedicated environment. You get your dedicated environment for 20K$ a month.
That's the expected behaviour. In BigQuery you are using a shared infrastructure, so depending on the use at the moment you will get better or worse response time. Actually batch queries (those not needing interactivity) are encouraged and rewarded by not adding up to your quota.
You typically don't use BigQuery as your main database to show data in your web application. Depending on what you want to do, BigQuery can be a Big Data storage and you should have another intermediate store where you could store computed results to display to your users. Or maybe in your use case you don't really need BigQuery and there is a better solution.
In any case, you are not going to be able to avoid a few seconds wait (even if you go Premium, you get more guarantees about the service, but in no case a service fast enough as to be your main backend for a webapp)