BST Time Complexity - time-complexity

Assume that T is a binary search tree with n nodes and height h. Each node x of T stores a
real number x.Key. Give the worst-case time complexity of the following algorithm Func1(T.root). You
need to justify your answer.
Func 1 (x)
if (x == NIL) return 0;
s1 <- Func1(x.left());
if (s1 < 100) then
s2 <- Func1(x.Right());
end
else
s2 <- 0;
end
s <- s1 + s2 + x.Key();
return (s);
x.left() & x.right() return left and right child of node x
x.key() return the key stored at node x
For the worst case run time, I was thinking that this would be O(height of tree) since this basically act like the minimum() or maximum() binary search tree algorithms. However, it's recursive, so I'm slightly hesitant to actually write O(h) as the worst case run-time.
When I think about it, the worst case would be if the function executed the if(s1 < 100) statement for every x.left, which would mean that every node is visited, so would that make the run time O(n)?

You're correct that the worst-case runtime of this function is Θ(n), which happens if that if statement always executes. In that case, the recursion visits each node, recursively visits the full right subtree, then recursively visits the full left subtree. (It also does O(1) work per node, which is why this sums up to O(n)).

Related

How the complexity of the following code is O(nlogn)?

for(i=1;i<=n;i=i*2)
{
for(j=1;j<=i;j++)
{
}
}
How the complexity of the following code is O(nlogn) ?
Time complexity in terms of what? If you want to know how many inner loop operations the algorithm performs, it is not O(n log n). If you want to take into account also the arithmetic operations, then see further below. If you literally are to plug in that code into a programming language, chances are the compiler will notice that your code does nothing and optimise the loop away, resulting in constant O(1) time complexity. But only based on what you've given us, I would interpret it as time complexity in terms of whatever might be inside the inner loop, not counting arithmetic operations of the loops themselves. If so:
Consider an iteration of your inner loop a constant-time operation, then we just need to count how many iterations the inner loop will make.
You will find that it will make
1 + 2 + 4 + 8 + ... + n
iterations, if n is a square number. If it is not square, it will stop a bit sooner, but this will be our upper limit.
We can write this more generally as
the sum of 2i where i ranges from 0 to log2n.
Now, if you do the math, e.g. using the formula for geometric sums, you will find that this sum equals
2n - 1.
So we have a time complexity of O(2n - 1) = O(n), if we don't take the arithmetic operations of the loops into account.
If you wish to verify this experimentally, the best way is to write code that counts how many times the inner loop runs. In javascript, you could write it like this:
function f(n) {
let c = 0;
for(i=1;i<=n;i=i*2) {
for(j=1;j<=i;j++) {
++c;
}
}
console.log(c);
}
f(2);
f(4);
f(32);
f(1024);
f(1 << 20);
If you do want to take the arithmetic operations into account, then it depends a bit on your assumptions but you can indeed get some logarithmic coefficients to account for. It depends on how you formulate the question and how you define an operation.
First, we need to estimate number of high-level operations executed for different n. In this case the inner loop is an operation that you want to count, if I understood the question right.
If it is difficult, you may automate it. I used Matlab for example code since there was no tag for specific language. Testing code will look like this:
% Reasonable amount of input elements placed in array, change it to fit your needs
x = 1:1:100;
% Plot linear function
plot(x,x,'DisplayName','O(n)', 'LineWidth', 2);
hold on;
% Plot n*log(n) function
plot(x, x.*log(x), 'DisplayName','O(nln(n))','LineWidth', 2);
hold on;
% Apply our function to each element of x
measured = arrayfun(#(v) test(v),x);
% Plot number of high level operations performed by our function for each element of x
plot(x,measured, 'DisplayName','Measured','LineWidth', 2);
legend
% Our function
function k = test(n)
% Counter for operations
k = 0;
% Outer loop, same as for(i=1;i<=n;i=i*2)
i = 1;
while i < n
% Inner loop
for j=1:1:i
% Count operations
k=k+1;
end
i = i*2;
end
end
And the result will look like
Our complexity is worse than linear but not worse than O(nlogn), so we choose O(nlogn) as an upper bound.
Furthermore the upper bound should be:
O(n*log2(n))
The worst case is n being in 2^x. x€real numbers
The inner loop is evaluated n times, the outer loop log2 (logarithm basis 2) times.

Ranking Big O Functions By Complexity

I am trying to rank these functions — 2n, n100, (n + 1)2, n·lg(n), 100n, n!, lg(n), and n99 + n98 — so that each function is the big-O of the next function, but I do not know a method of determining if one function is the big-O of another. I'd really appreciate if someone could explain how I would go about doing this.
Assuming you have some programming background. Say you have below code:
void SomeMethod(int x)
{
for(int i = 0; i< x; i++)
{
// Do Some Work
}
}
Notice that the loop runs for x iterations. Generalizing, we say that you will get the solution after N iterations (where N will be the value of x ex: number of items in array/input etc).
so This type of implementation/algorithm is said to have Time Complexity of Order of N written as O(n)
Similarly, a Nested For (2 Loops) is O(n-squared) => O(n^2)
If you have Binary decisions made and you reduce possibilities into halves and pick only one half for solution. Then complexity is O(log n)
Found this link to be interesting.
For: Himanshu
While the Link explains how log(base2)N complexity comes into picture very well, Lets me put the same in my words.
Suppose you have a Pre-Sorted List like:
1,2,3,4,5,6,7,8,9,10
Now, you have been asked to Find whether 10 exists in the list. The first solution that comes to mind is Loop through the list and Find it. Which means O(n). Can it be made better?
Approach 1:
As we know that List of already sorted in ascending order So:
Break list at center (say at 5).
Compare the value of Center (5) with the Search Value (10).
If Center Value == Search Value => Item Found
If Center < Search Value => Do above steps for Right Half of the List
If Center > Search Value => Do above steps for Left Half of the List
For this simple example we will find 10 after doing 3 or 4 breaks (at: 5 then 8 then 9) (depending on how you implement)
That means For N = 10 Items - Search time was 3 (or 4). Putting some mathematics over here;
2^3 + 2 = 10 for simplicity sake lets say
2^3 = 10 (nearly equals --- this is just to do simple Logarithms base 2)
This can be re-written as:
Log-Base-2 10 = 3 (again nearly)
We know 10 was number of items & 3 was the number of breaks/lookup we had to do to find item. It Becomes
log N = K
That is the Complexity of the alogorithm above. O(log N)
Generally when a loop is nested we multiply the values as O(outerloop max value * innerloop max value) n so on. egfor (i to n){ for(j to k){}} here meaning if youll say for i=1 j=1 to k i.e. 1 * k next i=2,j=1 to k so i.e. the O(max(i)*max(j)) implies O(n*k).. Further, if you want to find order you need to recall basic operations with logarithmic usage like O(n+n(addition)) <O(n*n(multiplication)) for log it minimizes the value in it saying O(log n) <O(n) <O(n+n(addition)) <O(n*n(multiplication)) and so on. By this way you can acheive with other functions as well.
Approach should be better first generalised the equation for calculating time complexity. liken! =n*(n-1)*(n-2)*..n-(n-1)so somewhere O(nk) would be generalised formated worst case complexity like this way you can compare if k=2 then O(nk) =O(n*n)

Time complexity of for loops, I cannot really understand a thing

So these are the for loops that I have to find the time complexity, but I am not really clearly understood how to calculate.
for (int i = n; i > 1; i /= 3) {
for (int j = 0; j < n; j += 2) {
... ...
}
for (int k = 2; k < n; k = (k * k) {
...
}
For the first line, (int i = n; i > 1; i /= 3), keeps diving i by 3 and if i is less than 1 then the loop stops there, right?
But what is the time complexity of that? I think it is n, but I am not really sure.
The reason why I am thinking it is n is, if I assume that n is 30 then i will be like 30, 10, 3, 1 then the loop stops. It runs n times, doesn't it?
And for the last for loop, I think its time complexity is also n because what it does is
k starts as 2 and keeps multiplying itself to itself until k is greater than n.
So if n is 20, k will be like 2, 4, 16 then stop. It runs n times too.
I don't really think I am understanding this kind of questions because time complexity can be log(n) or n^2 or etc but all I see is n.
I don't really know when it comes to log or square. Or anything else.
Every for loop runs n times, I think. How can log or square be involved?
Can anyone help me understanding this? Please.
Since all three loops are independent of each other, we can analyse them separately and multiply the results at the end.
1. i loop
A classic logarithmic loop. There are countless examples on SO, this being a similar one. Using the result given on that page and replacing the division constant:
The exact number of times that this loop will execute is ceil(log3(n)).
2. j loop
As you correctly figured, this runs O(n / 2) times;
The exact number is floor(n / 2).
3. k loop
Another classic known result - the log-log loop. The code just happens to be an exact replicate of this SO post;
The exact number is ceil(log2(log2(n)))
Combining the above steps, the total time complexity is given by
Note that the j-loop overshadows the k-loop.
Numerical tests for confirmation
JavaScript code:
T = function(n) {
var m = 0;
for (var i = n; i > 1; i /= 3) {
for (var j = 0; j < n; j += 2)
m++;
for (var k = 2; k < n; k = k * k)
m++;
}
return m;
}
M = function(n) {
return ceil(log(n)/log(3)) * (floor(n/2) + ceil(log2(log2(n))));
}
M(n) is what the math predicts that T(n) will exactly be (the number of inner loop executions):
n T(n) M(n)
-----------------------
100000 550055 550055
105000 577555 577555
110000 605055 605055
115000 632555 632555
120000 660055 660055
125000 687555 687555
130000 715055 715055
135000 742555 742555
140000 770055 770055
145000 797555 797555
150000 825055 825055
M(n) matches T(n) perfectly as expected. A plot of T(n) against n log n (the predicted time complexity):
I'd say that is a convincing straight line.
tl;dr; I describe a couple of examples first, I analyze the complexity of the stated problem of OP at the bottom of this post
In short, the big O notation tells you something about how a program is going to perform if you scale the input.
Imagine a program (P0) that counts to 100. No matter how often you run the program, it's going to count to 100 as fast each time (give or take). Obviously right?
Now imagine a program (P1) that counts to a number that is variable, i.e. it takes a number as an input to which it counts. We call this variable n. Now each time P1 runs, the performance of P1 is dependent on the size of n. If we make n a 100, P1 will run very quickly. If we make n equal to a googleplex, it's going to take a little longer.
Basically, the performance of P1 is dependent on how big n is, and this is what we mean when we say that P1 has time-complexity O(n).
Now imagine a program (P2) where we count to the square root of n, rather than to itself. Clearly the performance of P2 is going to be worse than P1, because the number to which they count differs immensely (especially for larger n's (= scaling)). You'll know by intuition that P2's time-complexity is equal to O(n^2) if P1's complexity is equal to O(n).
Now consider a program (P3) that looks like this:
var length= input.length;
for(var i = 0; i < length; i++) {
for (var j = 0; j < length; j++) {
Console.WriteLine($"Product is {input[i] * input[j]}");
}
}
There's no n to be found here, but as you might realise, this program still depends on an input called input here. Simply because the program depends on some kind of input, we declare this input as n if we talk about time-complexity. If a program takes multiple inputs, we simply call those different names so that a time-complexity could be expressed as O(n * n2 + m * n3) where this hypothetical program would take 4 inputs.
For P3, we can discover it's time-complexity by first analyzing the number of different inputs, and then by analyzing in what way it's performance depends on the input.
P3 has 3 variables that it's using, called length, i and j. The first line of code does a simple assignment, which' performance is not dependent on any input, meaning the time-complexity of that line of code is equal to O(1) meaning constant time.
The second line of code is a for loop, implying we're going to do something that might depend on the length of something. And indeed we can tell that this first for loop (and everything in it) will be executed length times. If we increase the size of length, this line of code will do linearly more, thus this line of code's time complexity is O(length) (called linear time).
The next line of code will take O(length) time again, following the same logic as before, however since we are executing this every time execute the for loop around it, the time complexity will be multiplied by it: which results in O(length) * O(length) = O(length^2).
The insides of the second for loop do not depend on the size of the input (even though the input is necessary) because indexing on the input (for arrays!!) will not become slower if we increase the size of the input. This means that the insides will be constant time = O(1). Since this runs in side of the other for loop, we again have to multiply it to obtain the total time complexity of the nested lines of code: `outside for-loops * current block of code = O(length^2) * O(1) = O(length^2).
The total time-complexity of the program is just the sum of everything we've calculated: O(1) + O(length^2) = O(length^2) = O(n^2). The first line of code was O(1) and the for loops were analyzed to be O(length^2). You will notice 2 things:
We rename length to n: We do this because we express
time-complexity based on generic parameters and not on the ones that
happen to live within the program.
We removed O(1) from the equation. We do this because we're only
interested in the biggest terms (= fastest growing). Since O(n^2)
is way 'bigger' than O(1), the time-complexity is defined equal to
it (this only works like that for terms (e.g. split by +), not for
factors (e.g. split by *).
OP's problem
Now we can consider your program (P4) which is a little trickier because the variables within the program are defined a little cloudier than the ones in my examples.
for (int i = n; i > 1; i /= 3) {
for (int j = 0; j < n; j += 2) {
... ...
}
for (int k = 2; k < n; k = (k * k) {
...
}
}
If we analyze we can say this:
The first line of code is executed O(cbrt(3)) times where cbrt is the cubic root of it's input. Since i is divided by 3 every loop, the cubic root of n is the number of times the loop needs to be executed before i is smaller or equal to 1.
The second for loop is linear in time because j is executed
O(n / 2) times because it is increased by 2 rather than 1 which
would be 'normal'. Since we know that O(n/2) = O(n), we can say
that this for loop is executed O(cbrt(3)) * O(n) = O(n * cbrt(n)) times (first for * the nested for).
The third for is also nested in the first for, but since it is not nested in the second for, we're not going to multiply it by the second one (obviously because it is only executed each time the first for is executed). Here, k is bound by n, however since it is increased by a factor of itself each time, we cannot say it is linear, i.e. it's increase is defined by a variable rather than by a constant. Since we increase k by a factor of itself (we square it), it will reach n in 2log(n) steps. Deducing this is easy if you understand how log works, if you don't get this you need to understand that first. In any case, since we analyze that this for loop will be run O(2log(n)) time, the total complexity of the third for is O(cbrt(3)) * O(2log(n)) = O(cbrt(n) *2log(n))
The total time-complexity of the program is now calculated by the sum of the different sub-timecomplexities: O(n * cbrt(n)) + O(cbrt(n) *2log(n))
As we saw before, we only care about the fastest growing term if we talk about big O notation, so we say that the time-complexity of your program is equal to O(n * cbrt(n)).

Calculating time complexity using master method

Can anyone explain the time complexity of the below using the master method?
int sum(Node node) {
if (node == null) {
return 0;
}
return sum(node.left) + node.value + sum(node.right);
}
I know a's value is 2 but its hard for me to identify b and d. Is b=1 and d=cO(n)? In that case can anyone explain how b and d should be identified
well, to make the recurrence relation less complicated, we can assume a balanced binary tree that has 2^inodes, so we obtain a recurrence of T(n) = 2T(n/2) + 1 (ignoring the base case).
From above, we can find a = 2, b = 2, and c = 0, since 1 is O(1). Applying the master method, it passes case 1 and we can get our complexity as T(n) = Θ(nlog22) or O(n)
This is a function used to sum up all nodes in a binary tree. First down from root to leave and then goes up (stack unwinding). So, time complexity is O(N), as it needs to visit each node at least once.

Segment tree - query complexity

I am having problems with understanding segment tree complexity. It is clear that if you have update function which has to change only one node, its complexity will be log(n).
But I have no idea why complexity of query(a,b), where (a,b) is interval that needs to be checked, is log(n).
Can anyone provide me with intuitive / formal proof to understand this?
There are four cases when query the interval (x,y)
FIND(R,x,y) //R is the node
% Case 1
if R.first = x and R.last = y
return {R}
% Case 2
if y <= R.middle
return FIND(R.leftChild, x, y)
% Case 3
if x >= R.middle + 1
return FIND(R.rightChild, x, y)
% Case 4
P = FIND(R.leftChild, x, R.middle)
Q = FIND(R.rightChild, R.middle + 1, y)
return P union Q.
Intuitively, first three cases reduce the level of tree height by 1, since the tree has height log n, if only first three cases happen, the running time is O(log n).
For the last case, FIND() divide the problem into two subproblems. However, we assert that this can only happen at most once. After we called FIND(R.leftChild, x, R.middle), we are querying R.leftChild for the interval [x, R.middle]. R.middle is the same as R.leftChild.last. If x > R.leftChild.middle, then it is Case 1; if x <= R.leftChild, then we will call
FIND ( R.leftChild.leftChild, x, R.leftChild.middle );
FIND ( R.leftChild.rightChild, R.leftChild.middle + 1, , R.leftChild.last );
However, the second FIND() returns R.leftChild.rightChild.sum and therefore takes constant time, and the problem will not be separate into two subproblems (strictly speaking, the problem is separated, though one subproblem takes O(1) time to solve).
Since the same analysis holds on the rightChild of R, we conclude that after case4 happens the first time, the running time T(h) (h is the remaining level of the tree) would be
T(h) <= T(h-1) + c (c is a constant)
T(1) = c
which yields:
T(h) <= c * h = O(h) = O(log n) (since h is the height of the tree)
Hence we end the proof.
This is my first time to contribute, hence if there are any problems, please kindly point them out and I would edit my answer.
A range query using a segment tree basically involves recursing from the root node. You can think of the entire recursion process as a traversal on the segment tree: any time a recursion is needed on a child node, you are visiting that child node in your traversal. So analyzing the complexity of a range query is equivalent to finding the upper bound for the total number of nodes that are visited.
It turns out that at any arbitrary level, there are at most 4 nodes that can be visited. Since the segment tree has a height of log(n) and that at any level there are at most 4 nodes that can be visited, the upper bound is actually 4*log(n). The time complexity is therefore O(log(n)).
Now we can prove this with induction. The base case is at the first level where the root node lies. Since the root node has at most two child nodes, we can only visit at most those two child nodes, which is at most 4 nodes.
Now suppose it is true that at an arbitrary level (say level i) we visit at most 4 nodes. We want to show that we will visit at most 4 nodes at the next level (level i+1) as well. If we had visited only 1 or 2 nodes at level i, it's trivial to show that at level i+1 we will visit at most 4 nodes because each node can have at most 2 child nodes.
So let's focus on the assumption that 3 or 4 nodes were visited at level i, and try to show that at level i+1 we can also have at most 4 visited nodes. Now since the range query is asking for a contiguous range, we know that the 3 or 4 nodes visited at level i can be categorized into 3 partitions of nodes: a leftmost single node whose segment range is only partially covered by the query range, a rightmost single node whose segment range is only partially covered by the query range, and 1 or 2 middle nodes whose segment range is fully covered by the query range. Since the middle nodes have their segment range(s) fully covered by the query range, there would be no recursion at the next level; we just use their precomputed sums. We are left with possible recursions on the leftmost node and the rightmost node at the next level, which is obviously at most 4.
This completes the proof by induction. We have proven that at any level at most 4 nodes are visited. The time complexity for a range query is therefore O(log(n)).
An interval of length n can be represented by k nodes where k <= log(n)
We can prove it based on how the binary system works.