Rendering multi series line chart with time on x axis in AnyChart - data-visualization

I am trying Anychart line chart with multi series with date time on x axis. Not able to render the chart perfectly. Its drawing the series 1 with the given data then for the second series its rendering the date time freshly on x axis after the 1st series values then plotting the series 2.
data is like:
"data": [
{"x": "10/2/2016 01:00:00 AM", "value": "128.14"},
{"x": "10/2/2016 01:10:00 AM", "value": "112.61"}
]
},{
// second series data
"data": [
{"x": "10/2/2016 01:01:00 AM", "value": "90.54"},
{"x": "10/2/2016 01:02:00 AM", "value": "104.19"},
{"x": "10/2/2016 01:11:00 AM", "value": "150.67"}
]
It has to plot on x axis like 10/2/2016 01:00:00 AM, 10/2/2016 01:01:00 AM, 10/2/2016 01:02:00 AM, 10/2/2016 01:10:00 AM, 10/2/2016 01:11:00 AM
but it plotting like 10/2/2016 01:00:00 AM, 10/2/2016 01:10:00 AM, 10/2/2016 01:01:00 AM, 10/2/2016 01:02:00 AM, 10/2/2016 01:11:00 AM
Updating the code:
anychart.onDocumentReady(function() {
// JSON data
var json = {
// chart settings
"chart": {
// chart type
"type": "line",
// chart title
"title": "Axes settings from JSON",
// series settings
"series": [{
// first series data
"data": [
{"x": "10/2/2016 01:00:00 AM", "value": 128.14},
{"x": "10/2/2016 01:10:00 AM", "value": 112.61},
{"x": "10/3/2016 01:00:00 AM", "value": 12.14},
{"x": "10/3/2016 01:10:00 AM", "value": 152.61},
]},{
"data": [
{"x": "10/2/2016 01:09:00 AM", "value": 28.14},
{"x": "10/2/2016 01:11:00 AM", "value": 12.61},
{"x": "10/3/2016 01:01:00 AM", "value": 1.14},
{"x": "10/3/2016 01:12:00 AM", "value": 15.61},
]
}],
// x scale settings
"xScale": {
ticks:
{scale: "DateTime"}
},
xAxes: [{
title: "Basic X Axis"
}],
// chart container
"container": "container"
}
};
// get JSON data
var chart = anychart.fromJson(json);
// draw chart
chart.draw();
});

With this type of data you need to use scatter chart: http://docs.anychart.com/7.12.0/Basic_Charts_Types/Scatter_Chart
Datetime scale should be set like this in JSON:
"xScale": {
type: "datetime",
minimum: "10/02/2016 00:00:00",
maximum: "10/03/2016 12:00:00",
}
Here is a sample: https://jsfiddle.net/3ewcnp5j/102/

Related

Laravel query sum group by week and get 0 for weeks not existent in the dataset

Hi I am trying to get sum of quantity group by week of current year.
Here is my query which is working
Sale::selectRaw('sum(qty) as y')
->selectRaw(DB::raw('WEEK(order_date,1) as x'))
->whereYear('order_date',Carbon::now()->format('Y'))
->groupBy('x')
->orderBy('x', 'ASC')
->get();
The response I get is look like this. where x is the week number and y is the sum value.
[
{
"y": "50",
"x": 2
},
{
"y": "4",
"x": 14
}
]
I want to get 0 values for the week that doesn't have any value for y
My desired result should be like this
[
{
"y": "0",
"x": 1
},
{
"y": "50",
"x": 2
},
...
...
...
{
"y": "4",
"x": 14
}
]

Pandas json normalize

Can someone help on how to put this json structure into pandas dataframe ? I would like the final structure to have date, high, low, open, low, close as the column.
The issues I have with this structure is that the key is a running numbers (eg 1607956200, 1607956500, 1607956800 ...) and I can't possibly lay out all the running numbers.
I have tried with the code below but I get all the data in the column with only 1 row.
response=requests.get(url).text
data = json.loads(response)
df = pd.json_normalize(data['history'] )
Below is an example of data
data = {"meta": {"regularMarketPrice": 9.78, "chartPreviousClose": 9.02, "previousClose": 9.78, "scale": 3, "dataGranularity": "5m", "range": "" },
"history": {"1607956200": { "date": "14-12-2020", "open": 9.13, "high": 9.18, "low": 9.12, "close": 9.14 },
"1607956500": { "date": "14-12-2020", "open": 9.14, "high": 9.14, "low": 9.08, "close": 9.1 },
"1607956800": { "date": "14-12-2020", "open": 9.1, "high": 9.11, "low": 9.09, "close": 9.1 },}}
Create the dataframe and then transpose
df = pd.DataFrame(data['history']).T
date open high low close
1607956200 14-12-2020 9.13 9.18 9.12 9.14
1607956500 14-12-2020 9.14 9.14 9.08 9.10
1607956800 14-12-2020 9.10 9.11 9.09 9.10

Combining separate temporal measurement series

I have a data set that combines two temporal measurement series with one row per measurement
time: 1, measurement: a, value: 5
time: 2, measurement: b, value: false
time: 10, measurement: a, value: 2
time: 13, measurement: b, value: true
time: 20, measurement: a, value: 4
time: 24, measurement: b, value: true
time: 30, measurement: a, value: 6
time: 32, measurement: b, value: false
in a visualization using Vega lite, I'd like to combine the measurement series and encode measurement a and b in a single visualization without simply layering their representation on a temporal axis but representing their value in a single encoding spec.
either measurement a values need to be interpolated and added as a new value to rows of measurement b
eg:
time: 2, measurement: b, value: false, interpolatedMeasurementA: 4.6667
or the other way around, which leaves the question of how to interpolate a boolean. maybe closest value by time, or simpler: last value
eg:
time: 30, measurement: a, value: 6, lastValueMeasurementB: true
I suppose this could be done either query side in which case this question would be regarding indexDB Flux query language
or this could be done on the visualization side in which case this would be regarding vega-lite
There's not any true linear interpolation schemes built-in to Vega-Lite (though the loess transform comes close), but you can achieve roughly what you wish with a window transform.
Here is an example (view in editor):
{
"data": {
"values": [
{"time": 1, "measurement": "a", "value": 5},
{"time": 2, "measurement": "b", "value": false},
{"time": 10, "measurement": "a", "value": 2},
{"time": 13, "measurement": "b", "value": true},
{"time": 20, "measurement": "a", "value": 4},
{"time": 24, "measurement": "b", "value": true},
{"time": 30, "measurement": "a", "value": 6},
{"time": 32, "measurement": "b", "value": false}
]
},
"transform": [
{
"calculate": "datum.measurement == 'a' ? datum.value : null",
"as": "measurement_a"
},
{
"window": [
{"op": "mean", "field": "measurement_a", "as": "interpolated"}
],
"sort": [{"field": "time"}],
"frame": [1, 1]
},
{"filter": "datum.measurement == 'b'"}
],
"mark": "line",
"encoding": {
"x": {"field": "time"},
"y": {"field": "interpolated"},
"color": {"field": "value"}
}
}
This first uses a calculate transform to isolate the values to be interpolated, then a window transform that computes the mean over adjacent values (frame: [1, 1]), then a filter transform to isolate interpolated rows.
If you wanted to go the other route, you could do a similar sequence of transforms targeting the boolean value instead.

Error using tensorflow create_coco_tf_record script: "TypeError: string indices must be integers"

I want to use the create_coco_tf_record-script provided by tensorflow, to convert the following simple label definition in coco json format to TFRecord:
"info": {
"year": 2018,
"version": null,
"description": "TransferLearningTest",
"contributor": "ralph#r4robotics.com.au",
"url": "labelbox.io",
"date_created": "2018-03-25T08:30:27.427851+00:00"
},
"images": [{
"id": "cjf6gxqjw2fho01619gre5j0y",
"width": 615,
"height": 409,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354",
"date_captured": null
}, {
"id": "cjf6gyhtl55sv01385xtqjrqi",
"width": 259,
"height": 194,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d",
"date_captured": null
}, {
"id": "cjf6gzj9v2g1h0161bwh18chv",
"width": 277,
"height": 182,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682",
"date_captured": null
}, {
"id": "cjf6h0p9n55wz0178pg79lc3c",
"width": 301,
"height": 167,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d",
"date_captured": null
}],
"annotations": [{
"id": 1,
"image_id": "cjf6gxqjw2fho01619gre5j0y",
"category_id": 1,
"segmentation": [
[118.39765618513167, 313.457848898712, 179.7169976455091, 299.1734470204843, 294.6908226914901, 310.3222212573321, 337.1962867729657, 334.7101881586143, 366.4623832276035, 338.89097185223864, 372.03689297966736, 385.5765403887654, 332.31863061175864, 389.75732408238974, 282.84505592143563, 406.48051201843583, 215.9512047089942, 408.5708772844735, 192.2596180064203, 390.4541125044023, 151.8445552101198, 403.6933051688366, 105.1582353958287, 376.51813141795526, 118.39765618513167, 313.457848898712]
],
"area": 22106.876283900496,
"bbox": [105.1582353958287, 0.42912271552648545, 266.8786575838387, 109.39743026398922],
"iscrowd": 0
}, {
"id": 2,
"image_id": "cjf6gxqjw2fho01619gre5j0y",
"category_id": 1,
"segmentation": [
[160.20631983821562, 142.04523900617488, 195.04687288245222, 131.24488556110788, 308.62704390918475, 134.03209241070698, 356.01021731433246, 152.1488571907783, 381.7922053020817, 150.75522718520426, 384.57951334057844, 186.64038911511503, 349.7389071338769, 187.68559832890833, 317.6856089656722, 202.3183678373679, 159.50946624735892, 195.3503772941444, 160.20631983821562, 142.04523900617488]
],
"area": 13123.705213053147,
"bbox": [159.50946624735892, 206.6816321626321, 225.07004709321953, 71.07348227626002],
"iscrowd": 0
}, {
"id": 3,
"image_id": "cjf6gyhtl55sv01385xtqjrqi",
"category_id": 1,
"segmentation": [
[80.06035395893144, 68.18619344603749, 119.11342792196902, 74.69491256085784, 131.84812313721997, 72.14801308536389, 177.97602777539703, 78.09078572494903, 187.59778022105084, 91.67421361042045, 203.1624077063576, 93.37213939731716, 201.18146375358646, 112.04938782407424, 184.76784795099502, 111.200414135477, 169.20322046568833, 122.51994816851872, 128.16920254987957, 117.42614921753086, 114.86852951688535, 114.03029764373744, 93.07803808305403, 114.31328167650393, 70.43857992260781, 103.2767316762287, 80.06035395893144, 68.18619344603749]
],
"area": 4995.907009222967,
"bbox": [70.43857992260781, 71.48005183148128, 132.7238277837498, 54.33375472248123],
"iscrowd": 0
}, {
"id": 4,
"image_id": "cjf6gzj9v2g1h0161bwh18chv",
"category_id": 1,
"segmentation": [
[173.46162883883662, 160.28013107383993, 255.65715601241382, 148.2998138472238, 266.2728180897869, 177.11325728633884, 184.68389092165103, 182.8759506021435, 159.20627416758742, 180.1462513325615, 154.35340470313542, 170.74397441725296, 175.28142885516084, 167.7109803710303, 173.46162883883662, 160.28013107383993]
],
"area": 2509.1082874191734,
"bbox": [154.35340470313542, -0.8759506021434983, 111.91941338665146, 34.576136754919716],
"iscrowd": 0
}, {
"id": 5,
"image_id": "cjf6gzj9v2g1h0161bwh18chv",
"category_id": 1,
"segmentation": [
[37.58112185203197, 87.03332022958155, 45.16373762158412, 93.40262623857566, 94.90570169790779, 106.44448675338808, 106.73458692647054, 87.03332022958155, 46.680260775494574, 73.08155224493905, 40.31086815713212, 74.901344044691, 33.63817553604898, 74.901344044691, 27.875382923127926, 80.9673321371363, 37.58112185203197, 87.03332022958155]
],
"area": 1386.09176276128,
"bbox": [27.875382923127926, 75.55551324661192, 78.85920400334261, 33.36293450844903],
"iscrowd": 0
}, {
"id": 6,
"image_id": "cjf6gzj9v2g1h0161bwh18chv",
"category_id": 1,
"segmentation": [
[200.7590456092244, 136.92608617388885, 181.95412147624396, 120.09295996138994, 234.4258318576678, 85.2135284298296, 255.05055600697247, 103.71478748380605, 200.7590456092244, 136.92608617388885]
],
"area": 1614.301579806095,
"bbox": [181.95412147624396, 45.073913826111145, 73.09643453072852, 51.71255774405926],
"iscrowd": 0
}, {
"id": 7,
"image_id": "cjf6h0p9n55wz0178pg79lc3c",
"category_id": 1,
"segmentation": [
[17.847508506087518, 28.63952607163654, 66.60858665657888, 24.08859036914734, 77.98617155836023, 14.986669362689923, 145.27644948557162, 14.49906202292621, 147.5519565454611, 51.881911126804255, 75.0605019090974, 56.10780833710362, 64.0079859014193, 47.98110201017366, 24.3489855928197, 53.34473314609532, 17.847508506087518, 28.63952607163654]
],
"area": 4189.730491764894,
"bbox": [17.847508506087518, 110.89219166289638, 129.7044480393736, 41.60874631417741],
"iscrowd": 0
}, {
"id": 8,
"image_id": "cjf6h0p9n55wz0178pg79lc3c",
"category_id": 1,
"segmentation": [
[223.94433711573117, 23.27591973645434, 257.10186033759857, 27.82685543894354, 261.32783036444124, 48.306165303102944, 179.73427308501883, 104.86804629868364, 145.27644948557162, 113.3198159185429, 128.37261898053467, 122.42173692500033, 111.46876367433086, 108.76885541531423, 131.29826382863067, 96.09118858515549, 137.14960312715638, 77.56230808005091, 223.94433711573117, 23.27591973645434]
],
"area": 6031.236484118768,
"bbox": [111.46876367433086, 44.57826307499967, 149.85906669011038, 99.14581718854599],
"iscrowd": 0
}, {
"id": 9,
"image_id": "cjf6h0p9n55wz0178pg79lc3c",
"category_id": 1,
"segmentation": [
[26.299423758605975, 125.34733136210352, 40.60267830965016, 111.53193060632253, 117.97024076106304, 72.6862842838929, 133.57379568968702, 80.81299061082292, 132.59856420621048, 93.16559414805232, 111.46876367433086, 115.2702204768582, 64.33305479552251, 138.67514957886033, 46.128923912905776, 139.65033945764822, 23.37375410934314, 148.75226046410563, 8.095292875989244, 141.11316147693933, 26.299423758605975, 125.34733136210352]
],
"area": 3857.6591542480846,
"bbox": [8.095292875989244, 18.24773953589436, 125.47850281369777, 76.06597618021274],
"iscrowd": 0
}],
"licenses": [],
"categories": [{
"supercategory": "Bottle",
"id": 1,
"name": "Bottle"
}]
}
But when I run the script using
with open('coco_labels.json') as json_data:
label_info = json.load(json_data)
IMAGE_FOLDER = "coco_images"
with tf.python_io.TFRecordWriter("training.record") as writer:
for i,image in enumerate(label_info["images"]):
img_data = requests.get(image["file_name"]).content
image_name = "image"+str(i)+".jpg"
image_path = os.path.join(IMAGE_FOLDER,image_name)
with open(image_path, 'wb') as handler:
handler.write(img_data)
image["file_name"] = image_name
tf_example = create_coco_tf_record.create_tf_example(image,
label_info["annotations"][i],
IMAGE_FOLDER,
label_info["categories"]
)
writer.write(tf_example.SerializeToString())
I get the error
(image, annotations_list, image_dir, category_index, include_masks)
124 num_annotations_skipped = 0
125 for object_annotations in annotations_list:
--> 126 (x, y, width, height) = tuple(object_annotations['bbox'])
127 if width <= 0 or height <= 0:
128 num_annotations_skipped += 1
TypeError: string indices must be integers
What could be the problem?
Each image is supposed to receive a list of annotations, and you are providing a single one. Making it a single element list should solve your error.
Ideally, make each item of images in your json be a list itself. As a quick fix, embrace label_info["annotations"][i] in brackets:
[label_info["annotations"][i]]

C3JS Acces value shown on X axis

I have simple bar chart like this:
Here is my C3JS
var chart = c3.generate({
data: {
json:[{"A": 67, "B": 10, "site": "Google", "C": 12}, {"A": 10, "B": 20, "site": "Amazon", "C": 12}, {"A": 25, "B": 10, "site": "Stackoverflow", "C": 8}, {"A": 20, "B": 22, "site": "Yahoo", "C": 12}, {"A": 76, "B": 30, "site": "eBay", "C": 9}],
mimeType: 'json',
keys: {
x: 'site',
value: ['A','B','C']
},
type: 'bar',
selection: {
enabled: true
},
onselected: function(d,element)
{
alert('selected x: '+chart.selected()[0].x+' value: '+chart.selected()[0].value+' name: '+chart.selected()[0].name);
},
groups: [
['A','B','C']
]
},
axis: {
x: {
type: 'category'
}
}
});
After some chart elemnt is selected (clicked), alert shows X and Value and Name attributes of first selected element. For example "selected x: 0 value: 67 name: A" after I click on left-top chart element. How can I get value shown on X axis? In this case it is "Google".
Property categories is populated when the x-axis is declared to be of type category as it is in this case. So to get the data from the x-axis you needs to call the .categories() function.
onselected: function(d,element){alert(chart.categories()[d.index]);}
https://jsfiddle.net/4bos2qzx/1/