I have an xtext grammar for a modelling language that has multiple types of variables. In some cases I want to delimit the type a variable can have.
The current workflow is to just use a VariableQualifier (like in the grammar below) and use a validator to only permit the type I want. Then every time I access the reference I have to explicitly cast it.
Is there a better solution?
VariableReference:
ref=[Variable]
;
VariableQualifier:
(namespace+=NamespaceReference '.')* element=VariableReference
;
EnumerationReference:
ref=[Enumeration]
;
EnumerationQualifier:
(namespace+=NamespaceReference '.')* element=EnumerationReference
;
NamespaceReference:
ref=[Namespace]
;
One general pattern for this sort of problem is to have one generic reference syntactically that points to the abstract super type for all possible targets (common super type of Variable|Enumeration|Namespace).
E.g.:
VariableReference:
ref=[AbstractElement] ({VariableReference.parent=current} '.' ref=[AbstractElement])*;
Also note that modeling and referencing namespaces is often not really needed. You can instead use fully qualified names of things.
E.g.
VariableReference:
ref=[AbstractElement|QualifiedName]
Related
I am trying to figure out how yacc identifies function calls in a C code. For Example: if there is a function call like my_fun(a,b); then which rules does this statement reduces to.
I am using the cGrammar present in : C Grammar
Following the Grammar given over there manually; I figured out that we only have two choices in translation unit. Everything has to either be a function definition or a declaration. Now all declaration starts type_specifiers, storage_class_specifier etc but none of them starts with IDENTIFIER
Now in case of a function call the name would be IDENTIFIER. This leaves me unclear as to how it will be parsed and which rules will be used exactly?
According to the official yacc specification specified here yacc, everything is handled by user given routines. When you have a function call the name of course is IDENTIFIER.It is parsed using the user defined procedures.According to the specifications, the user can specify his input in terms of individual input characters, or in terms of higher level constructs such as names and numbers. The user-supplied routine may also handle idiomatic features such as comment and continuation conventions, which typically defy easy grammatical specification.
Do have a look.By the way you are supposed to do a thorough research before putting questions here.
I am wondering if there exists already some naming conventions for Ocaml, especially for names of constructors, names of variables, names of functions, and names for labels of record.
For instance, if I want to define a type condition, do you suggest to annote its constructors explicitly (for example Condition_None) so as to know directly it is a constructor of condition?
Also how would you name a variable of this type? c or a_condition? I always hesitate to use a, an or the.
To declare a function, is it necessary to give it a name which allows to infer the types of arguments from its name, for example remove_condition_from_list: condition -> condition list -> condition list?
In addition, I use record a lot in my programs. How do you name a record so that it looks different from a normal variable?
There are really thousands of ways to name something, I would like to find a conventional one with a good taste, stick to it, so that I do not need to think before naming. This is an open discussion, any suggestion will be welcome. Thank you!
You may be interested in the Caml programming guidelines. They cover variable naming, but do not answer your precise questions.
Regarding constructor namespacing : in theory, you should be able to use modules as namespaces rather than adding prefixes to your constructor names. You could have, say, a Constructor module and use Constructor.None to avoid confusion with the standard None constructor of the option type. You could then use open or the local open syntax of ocaml 3.12, or use module aliasing module C = Constructor then C.None when useful, to avoid long names.
In practice, people still tend to use a short prefix, such as the first letter of the type name capitalized, CNone, to avoid any confusion when you manipulate two modules with the same constructor names; this often happen, for example, when you are writing a compiler and have several passes manipulating different AST types with similar types: after-parsing Let form, after-typing Let form, etc.
Regarding your second question, I would favor concision. Inference mean the type information can most of the time stay implicit, you don't need to enforce explicit annotation in your naming conventions. It will often be obvious from the context -- or unimportant -- what types are manipulated, eg. remove cond (l1 # l2). It's even less useful if your remove value is defined inside a Condition submodule.
Edit: record labels have the same scoping behavior than sum type constructors. If you have defined a {x: int; y : int} record in a Coord submodule, you access fields with foo.Coord.x outside the module, or with an alias foo.C.x, or Coord.(foo.x) using the "local open" feature of 3.12. That's basically the same thing as sum constructors.
Before 3.12, you had to write that module on each field of a record, eg. {Coord.x = 2; Coord.y = 3}. Since 3.12 you can just qualify the first field: {Coord.x = 2; y = 3}. This also works in pattern position.
If you want naming convention suggestions, look at the standard library. Beyond that you'll find many people with their own naming conventions, and it's up to you to decide who to trust (just be consistent, i.e. pick one, not many). The standard library is the only thing that's shared by all Ocaml programmers.
Often you would define a single type, or a single bunch of closely related types, in a module. So rather than having a type called condition, you'd have a module called Condition with a type t. (You should give your module some other name though, because there is already a module called Condition in the standard library!). A function to remove a condition from a list would be Condition.remove_from_list or ConditionList.remove. See for example the modules List, Array, Hashtbl,Map.Make`, etc. in the standard library.
For an example of a module that defines many types, look at Unix. This is a bit of a special case because the names are mostly taken from the preexisting C API. Many constructors have a short prefix, e.g. O_ for open_flag, SEEK_ for seek_command, etc.; this is a reasonable convention.
There's no reason to encode the type of a variable in its name. The compiler won't use the name to deduce the type. If the type of a variable isn't clear to a casual reader from the context, put a type annotation when you define it; that way the information provided to the reader is validated by the compiler.
I have a problem that I've been stuck on for a while and I would appreciate some help if possible.
I have a few rules in an ANTLR tree grammar:
block
: compoundstatement
| ^(VAR declarations) compoundstatement
;
declarations
: (^(t=type idlist))+
;
idlist
: IDENTIFIER+
;
type
: REAL
| i=INTEGER
;
I have written a Java class VarTable that I will insert all of my variables into as they are declared at the beginning of my source file. The table will also hold their variable types (ie real or integer). I'll also be able to use this variable table to check for undeclared variables or duplicate declarations etc.
So basically I want to be able to send the variable type down from the 'declarations' rule to the 'idlist' rule and then loop through every identifier in the idlist rule, adding them to my variable table one by one.
The major problem I'm getting is that I get a NullPointerException when I try and access the 'text' attribute if the $t variable in the 'declarations' rule (This is one one which refers to the type).
And yet if I try and access the 'text' attribute of the $i variable in the 'type' rule, there's no problem.
I have looked at the place in the Java file where the NullPointerException is being generated and it still makes no sense to me.
Is it a problem with the fact that there could be multiple types because the rule is
(^(typeidlist))+
??
I have the same issue when I get down to the idlist rule, becasue I'm unsure how I can write an action that will allow me to loop through all of the IDENTIFIER Tokens found.
Grateful for any help or comments.
Cheers
You can't reference the attributes from production rules like you tried inside tree grammars, only in parser (or combined) grammars (they're different objects!). Note that INTEGER is not a production rule, just a "simple" token (terminal). That's why you can invoke its .text attribute.
So, if you want to get a hold the text of the type rule in your tree grammar and print it in your declarations rule, your could do something like this:
tree grammar T;
...
declarations
: (^(t=type idlist {System.out.println($t.returnValue);}))+
;
...
type returns [String returnValue]
: i=INTEGER {returnValue = "[" + $i.text + "]";}
;
...
But if you really want to do it without specifying a return object, you could do something like this:
declarations
: (^(t=type idlist {System.out.println($t.start.getText());}))+
;
Note that type returns an instance of a TreeRuleReturnScope which has an attribute called start which in its turn is a CommonTree instance. You could then call getText() on that CommonTree instance.
I'm having a hard time understanding what I'm supposed to do. The only thing I've figured out is I need to use yacc on the cminus.y file. I'm totally confused about everything after that. Can someone explain this to me differently so that I can understand what I need to do?
INTRODUCTION:
We will use lex/flex and yacc/Bison to generate an LALR parser. I will give you a file called cminus.y. This is a yacc format grammar file for a simple C-like language called C-minus, from the book Compiler Construction by Kenneth C. Louden. I think the grammar should be fairly obvious.
The Yahoo group has links to several descriptions of how to use yacc. Now that you know flex it should be fairly easy to learn yacc. The only base type is int. An int is 4 bytes. Booleans are handled as ints, as in C. (Actually the grammar allows you to declare a variable as a type void, but let's not do that.) You can have one-dimensional arrays.
There are no pointers, but references to array elements should be treated as pointers (as in C).
The language provides for assignment, IF-ELSE, WHILE, and function calls and returns.
We want our compiler to output MIPS assembly code, and then we will be able to run it on SPIM. For a simple compiler like this with no optimization, an IR should not be necessary. We can output assembly code directly in one pass. However, our first step is to generate a symbol table.
SYMBOL TABLE:
I like Dr. Barrett’s approach here, which uses a lot of pointers to handle objects of different types. In essence the elements of the symbol table are identifier, type and pointer to an attribute object. The structure of the attribute object will differ according to the type. We only have a small number of types to deal with. I suggest using a linear search to find symbols in the table, at least to start. You can change it to hashing later if you want better performance. (If you want to keep in C, you can do dynamic allocation of objects using malloc.)
First you need to make a list of all the different types of symbols that there are—there are not many—and what attributes would be necessary for each. Be sure to allow for new attributes to be added, because we
have not covered all the issues yet. Looking at the grammar, the question of parameter lists for functions is a place where some thought needs to be put into the design. I suggest more symbol table entries and pointers.
TESTING:
The grammar is correct, so taking the existing grammar as it is and generating a parser, the parser will accept a correct C-minus program but it won’t produce any output, because there are no code snippets associated with the rules.
We want to add code snippets to build the symbol table and print information as it does so.
When an identifier is declared, you should print the information being entered into the symbol table. If a previous declaration of the same symbol in the same scope is found, an error message should be printed.
When an identifier is referenced, you should look it up in the table to make sure it is there. An error message should be printed if it has not been declared in the current scope.
When closing a scope, warnings should be generated for unreferenced identifiers.
Your test input should be a correctly formed C-minus program, but at this point nothing much will happen on most of the production rules.
SCOPING:
The most basic approach has a global scope and a scope for each function declared.
The language allows declarations within any compound statement, i.e. scope nesting. Implementing this will require some kind of scope numbering or stacking scheme. (Stacking works best for a one-pass
compiler, which is what we are building.)
(disclaimer) I don't have much experience with compiler classes (as in school courses on compilers) but here's what I understand:
1) You need to use the tools mentioned to create a parser which, when given input will tell the user if the input is a correct program as to the grammar defined in cminus.y. I've never used yacc/bison so I don't know how it is done, but this is what seems to be done:
(input) file-of-some-sort which represents output to be parsed
(output) reply-of-some-sort which tells if the (input) is correct with respect to the provided grammar.
2) It also seems that the output needs to check for variable consistency (ie, you can't use a variable you haven't declared same as any programming language), which is done via a symbol table. In short, every time something is declared you add it to the symbol table. When you encounter an identifier, if it is not one of the language identifiers (like if or while or for), you'll look it up in the symbol table to determine if it has been declared. If it is there, go on. If it's not - print some-sort-of-error
Note: point(2) there is a simplified take on a symbol table; in reality there's more to them than I just wrote but that should get you started.
I'd start with yacc examples - see what yacc can do and how it does it. I guess there must be some big example-complete-with-symbol-table out there which you can read to understand further.
Example:
Let's take input A:
int main()
{
int a;
a = 5;
return 0;
}
And input B:
int main()
{
int a;
b = 5;
return 0;
}
and assume we're using C syntax for parsing. Your parser should deem Input A all right, but should yell "b is undeclared" for Input B.
I have been keeping the shift/reduce errors away. Now finally i think i met my match.
Int[] a
a[0] = 1
The problem is int[] is defined as
Type OptSquareBrackets
while a[0] is defined as
Var | Var '[' expr ']'
Var and Type both are defined as VAR which is any valid variable [a-zA-Z][a-zA-Z0-9_]. Apart from adding a dummy token (such as **Decl** Type OptSquareBrackets instead) is there a way to write this to not have a conflict? From this one rule i get 1 shift/reduce and 1 reduce/reduce warning.
Could you define a new Token
VarLBracket [a-zA-Z][a-zA-Z0-9_]*\[
And therefore define declaration
Type | VarLBracket ']';
and define assignment target as
Var | VarLBracket expr ']';
Create a Lex rule with [] since [] is only used in declaration and everywhere else would use [var]
Technically, this problem stems from trying to tie the grammar to a semantic meaning that doesn't actually differ in syntax.
ISTM that you just need a single grammar construct that describes both types and expressions. Make the distinction in code and not in the grammar, especially if there is not actually a syntactic difference. Yacc is called a compiler generator but it is not the least bit true. It just makes parsers.
Having said that, recognizing [] as a terminal symbol might be an easier way to fix the problem and get on with things. Yacc isn't very good at ambiguous grammars and it needs to make early decisions on which path to follow.