Calculating the time complexity - time-complexity

Can somebody help with the time complexity of the following code:
for(i = 0; i <= n; i++)
{
for(j = 0; j <= i; j++)
{
for(k = 2; k <= n; k = k^2)
print("")
}
a/c to me the first loop will run n times,2nd will run for(1+2+3...n) times and third for loglogn times..
but i m not sure about the answer.

We start from the inside and work out. Consider the innermost loop:
for(k = 2; k <= n; k = k^2)
print("")
How many iterations of print("") are executed? First note that n is constant. What sequence of values does k assume?
iter | k
--------
1 | 2
2 | 4
3 | 16
4 | 256
We might find a formula for this in several ways. I used guess and prove to get iter = log(log(k)) + 1. Since the loop won't execute the next iteration if the value is already bigger than n, the total number of iterations executed for n is floor(log(log(n)) + 1). We can check this with a couple of values to make sure we got this right. For n = 2, we get one iteration which is correct. For n = 5, we get two. And so on.
The next level does i + 1 iterations, where i varies from 0 to n. We must therefore compute the sum 1, 2, ..., n + 1 and that will give us the total number of iterations of the outermost and middle loop: this sum is (n + 1)(n + 2) / 2 We must multiply this by the cost of the inner loop to get the answer, (n + 1)(n + 2)(log(log(n)) + 1) / 2 to get the total cost of the snippet. The fastest-growing term in the expansion is n^2 log(log(n)) and so that is what would typically be given as asymptotic complexity.

Related

What will be the time complexity of for(int i=n;i>n/2;i=i/2) and For for(int i=n;i>0;i=i/2) ? with mathematical solution

While finding time complexities I can find the time complexity of any loop but not able to proof or understand it mathematically for eg : for(i = 0 ; i > n ; i /= 2) have O(log n) but how can i find and proof it mathematically, Please help me to understand this.
Correciting the loop for(i = n ; i > 0 ; i /= 2)
First of all, I think the loop you want to ask about is this:
for (i = n; i > 0; i /= 2)
A simple empirical way to figure out the complexity is to simply relate the bound of the loop n to the number of times the loop executes. For example, if n = 16, then i would take the following values:
i | loop iteration
16 | 1
8 | 2
4 | 3
2 | 4
1 | 5
So for an input of n = 16, there are roughly 4 steps:
2^4 = n
log_2(n) = 4
=> number of iterations is log_2(n)

How are they calculating the Time Complexity for this Problem

Problem 6: Find the complexity of the below program: 
void function(int n)
{
    int i = 1, s =1;
    while (s <= n)
    {
        i++;
        s += i;
        printf("*");
    }
}
Solution: We can define the terms ‘s’ according to relation si = si-1 + i. The value of ‘i’ increases by one for each iteration. The value contained in ‘s’ at the ith iteration is the sum of the first ‘i’ positive integers. If k is total number of iterations taken by the program, then while loop terminates if: 1 + 2 + 3 ….+ k = [k(k+1)/2] > n So k = O(√n).
Time Complexity of the above function O(√n).
FROM: https://www.geeksforgeeks.org/analysis-algorithms-set-5-practice-problems/
Looking it over and over.
Apparently they are saying the Time Complexity is O(√n). I don't understand how they are getting to this result, and i've tried looking at this problem over and over. Can anyone break it down into detail?
At the start of the while-loop, we have s = 1; i = 1, and n is some (big) number. In each step of the loop, the following is done,
Take the current i, and increment it by one;
Add this new value for i to the sum s.
It is not difficult to see that successive updates of i forms the sequence 1, 2, 3, ..., and s the sequence 1, 1 + 2, 1 + 2 + 3, .... By a result attributed to the young Gauss, the sum of the first k natural numbers 1 + 2 + 3 + ... + k is k(k + 1) / 2. You should recognise that the sequence s fits this description, where k indicates the number of iterations!
The while-loop terminates when s > n, which is now equivalent to finding the lowest iteration number k such that (k(k + 1) / 2) > n. Simplifying for the asymptotic case, this gives a result such that k^2 > n, which we can simplify for k as k > sqrt(n). It follows that this algorithm runs in a time proportional to sqrt(n).
It is clear that k is the first integer such that k(k+1)/2 > n (otherwise the loop would have stopped earlier).
Then k-1 cannot have this same property, which means that (k-1)((k-1)+1)/2 <= n or (k-1)k/2 <= n. And we have the following sequence of implications:
(k-1)k/2 <= n → (k-1)k <= 2n
→ (k-1)^2 < 2n ; k-1 < k
→ k <= sqrt(2n) + 1 ; solve for k
<= sqrt(2n) + sqrt(2n) ; 1 < sqrt(2n)
= 2sqrt(2)sqrt(n)
= O(sqrt(n))

Time complexity of code within nested loop

Given
for (int i = 1; i <= n - 1; i++)
for (int j = i + 1; j <= n; j++)
Console.WriteLine(i, j);
I understand that the outer for loop runs 4n - 1 times and the inner runs 3n^2 - 3 times, however I don't understand why the print statement runs n(n - 1)/2 times. I am only getting n(n - 1) as my time complexity yet the slides say n(n - 1)/2. What am I missing?
for i = 1, j varies from 2 to n => n-1 times
for i = 2, j varies from 3 to n => n-2 times
...
...
for i=n-1 j varies from n to n => 1 time
so number of operations => (n-1) + (n-2) + (n-3) + .... +1
that solves to n(n-1)/2 (remember the formula for summation of n natural numbers - https://cseweb.ucsd.edu/groups/tatami/handdemos/sum/
You are not missing much because the big O bound of both n(n - 1) and n(n - 1)/2 is O(n^2). The double loop you showed will be upper bounded by O(n^2), and this is the main point here, I think.

How to calculate the complexity of the Algorithm?

I have to calculate the complexity of this algorithm,I tried to solve it and found the answer to be O(nlogn). Is it correct ? If not please explain.
for (i=5; i<n/2; i+=5)
{
for (j=1; j<n; j*=4)
op;
x = 3*n;
while(x > 6)
{op; x--;}
}
Katrina, In this example we've got an O (n*log(n))
`
for (int i= 0; i < N; i++) {
c= i;
while (c > 0) {
c= c/2
}
}
How ever you have another for that includes this both bucles.
Im not quite sure to understand the way it works the algorithm but an standard way considering an another for bucle, should be O(nnlog n
for (int j= 0; i < N); j++) { --> O(n)
for (int i= 0; i < N; i++) { O(n)
c= i;
while (c > 0) { O(logn)
c= c/2 O(1)
}
}
} ?
Aftermath in this standard algorithm would be O(n) * O(n) * O(logn) * O(1)
So, I think you forgot to include another O(n)
)
Hope it helps
Let's count the number of iterations in each loop.
The outermost loop for (i=5; i<n/2; i+=5) steps through all values between 5 and n / 2 in steps of 5. It will, thus, require approximately n / 10 - 1 iterations.
There are two inner loops. Let's consider the first one: for (j=1; j<n; j*=4). This steps through all values of the form 4^x between 1 and n for integers of x. The lowest value of x for this to be true is 0, and the highest value is the x that fulfills 4^x < n -- i.e., the integer closest to log_4(n). Thus, labelling the iterations by x, we have iterations 0, 1, ..., log_4(n). In other words, we've approximately log_4(n) + 1 iterations for this loop.
Now consider the second inner loop. It steps through all values from 3 * n down to 7. Thus the number of iterations are approximately 3 n - 6.
All other operations have constant run time and can therefore be ignored.
How do we put this together? The two inner loops are run sequentially (i.e., they are not nested) so the run time for both of them together is simply the sum:
(log_4(n) + 1) + (3 n - 6) = 3 n + log_4(n) - 5.
The outer loop and the two inner loops are, however, nested. For every iteration of the outer loop, both the inner ones are run. Therefore we multiply the number of iterations of the outer with the total of the inner:
(n / 10 - 1) * (3 n + log_4(n) - 5) =
= 3 n^2 / 10 + n log_4(n) / 10 - 7 n / 2 - log_4(n) + 5.
Finally, complexity is often expressed in Big-O notation -- that is, we're only interested in the order of the run time. This means two things. First, we can ignore all constant factors in all terms. For example, O(3 n^2 / 10) becomes just O(n^2). Thereby we have:
O(3 n^2 / 10 + n log_4(n) / 10 - 7 n / 2 - log_4(n) + 5) =
= O(n^2 + n log_4(n) - n - log_4(n) + 1).
Second, we can ignore all terms that have a lower order than the term with the highest order. For example, n is of an higher order than 1 so we have O(n + 1) = O(n). Thereby we have:
O(n^2 + n log_4(n) - n - log_4(n) + 1) = O(n^2).
Finally, we have the answer. The complexity of the algorithm your code describes is O(n^2).
(In practice, one would never calculate the (approximate) number of iterations as we did here. The simplification we did in the last step can be done earlier which makes the calculations much easier.)
As Fredrik mentioned, time complexity of first and third loops are O(n). an time for second loop is O(log(n)).
So complexity of following algorithm is O(n^2).
for (i=5; i<n/2; i+=5)
{
for (j=1; j<n; j*=4)
op;
x = 3*n;
while(x > 6)
{op; x--;}
}
Note that complexity of following algorithm is O(n^2*log(n)) which is not same with above algorithm.
for (i=5; i<n/2; i+=5)
{
for (j=1; j<n; j*=4)
{
op;
x = 3*n;
while(x > 6)
{op; x--;}
}
}

What is the order of growth of this function?

I'm new to algorithm and big 0. What is the order of growth of this function?
I do a println and f(10) runs 15 times. f(20) runs 31 times.
It looks to me like log(N)*N/2. So it is logarithmic or linearithmic?
static long f (long N) {
long sum = 0;
for (long i = 1; i < N; i *= 2)
for (long j = 0; j < i; j++)
sum++;
return sum;
}
The runtime is O(n). To see this, note that the inner loop runs 1 time on the first iteration, 2 times on the next iteration, 4 times on the next iteration, and more generally 2i times on the 2ith iteration. The outer loop stops after lg n iterations because it keeps doubling, so the total work done is
1 + 2 + 4 + 8 + ... + 2lg n
This is the sum of a geometric series and works out to 2lg n + 1 - 1 = 2 · 2lg n - 1 = 2n - 1 = O(n).
Hope this helps!
Inner loop j counts i times -> max is n
Outter loop counts from 0 to n, multiplying by 2 each time, so it's lgn times.
So total is o(nlgn)
Proceeding formally, you obtain:
O(2^lgn) should be the complexity.growth of exponential function is more than a linear funtion.Hence 2.2^lgn=O(2^lgn) instead of O(n)