MBED Serial dropping data - mbed

I use MBED (online IDE & libraries) for my application with host board NUCLEO-411RE and 4D Systems touch display connected by full duplex serial communication.
I am able to send data successfully from host to display without errors. However when sending data from display back to host I am losing data.
Reducing baud to 9600 does not solve the problem.
The host processor remains in a super loop with the first action to check if LCD sends serial data ( lcd4d.readable() ).
Host then receives one character at a time ( lcd4D.getc() ), echos it to the PC via usb ( pc.printf(&recChar) ) and does some further processing.
I am also monitoring the physical host receive pin on a separate terminal session. Using this I am certain that the LCD sends data correctly, however this data is not received and echoed correctly by the host processor (echo to PC is only used for debugging purposes).
Refer to super loop code snippet:
do {
if ( lcd4D.readable() ) {
recChar = lcd4D.getc();
pc.printf(&recChar);
lcd4D_intr_Rx();
}
Also refer to attached screen print showing terminal left PC echo (data loss) and terminal right hardware pin monitor (confirming data sent correctly).
Implementing SerialRX interrupt also does not help the situation with data loss still occurring.
Thanks for any suggestions; I am out of ideas.

I have solved the problem.
The issue was that the host processor needed to respond fast enough to the serial data received. I basically implemented a fast serial receive buffer and ensured that received characters are buffered immediately upon interrupt.

Related

STM32f103 HAL USB - UART bridge

I have a third party device that is UART programmable.
I need to create a USB - UART bridge with a functional password (programming only after entering the correct password)
generated the code using the latest version of STM32CubeMX for Atollic TrueSTUDIO for STM32 9.3.0 ...
I transfer data between USB and UART through a buffer (one for usb-uart, and another one for uart-usb)
when I try to transfer several characters everything is OK, but when I try to transfer a large data packet, problems start due to the fact that the USB speed is much higher than the UART ...
there are two questions:
1.How do I tell USB that I need to stop transferring data and wait until the UART (buffer) is busy
2.How on the side of the microcontroller to get the baud rate set on the PC (set when the terminal is connected to the virtual COM port)
USB provides flow control. That's what you need to implement. A general introduction can be found here:
https://medium.com/#manuel.bl/usb-for-microcontrollers-part-4-handling-large-amounts-of-data-f577565c4c7d
Basically, the setup for the USB-to-UART direction should be:
Indicate that the code is ready to receive a USB packet
Receive a USB packet
Indicate that you are no longer ready to receive a USB packet
Transmit the data via UART
Start over
Step 0: Initial setup
Call USBD_CDC_SetRxBuffer to set the buffer for receiving the USB data. Unless you use several buffers to achieve higher throughput, a single call at the start of the program is sufficient.
Step 1: Ready to receive data
Call USBD_CDC_ReceivePacket. Other than what the name implies, this function indicates that the app is ready to receive data. It immediately returns before the data has actually been received.
Step 2: Receive a USB packet
You don't need to do anything here. It will happen automatically. Once it's complete, CDC_Itf_Receive will be called.
Step 3: Indicate that you are no longer ready to receive a USB packet
Nothing to do here. This happens automatically whenever a packet has been received (and double buffering is not enabled).
Step 4: Transmit the data via UART
I guess you know how to do this. It's up to you whether you want to do it in a blocking fashion or using DMA.
Since a callback is involved, you cannot put this code into the main loop. It might be possible to put all code into CDC_Itf_Receive if blocking UART is used. It would appear in the order 2, 3, 4, 1. Additionally, initialization is needed (0 and 1).
In the UART-to-USB direction, you would need to implement flow control on the UART. The USB flow control is managed by the host. Even though USB is much faster than UART, flow control is relevant as the application on the host can process data as slow as it likes to.
Regarding question 2: I'm not sure I understand it... The microcontroller cannot set the baud rate on the host. Either the host can specify a baud rate (transmitted over USB and applied to UART), or if the UART has a fixed baud rate, you can ignore baud rate (any baud rate set on the host side will work as it does not apply to USB).

XBee Arduino API Remote At Command Response

I'm in trouble with programming my Arduino. I've two XBee Series 2 Modules and an Arduino UNO. I use the XBee-API library from: http://code.google.com/p/xbee-api/.
I generate three RemoteATRequest Packets (0x17) to control a Digital Pin of the Remote Sleepy Node and send it out of a SoftwareSerial to the XBee Coordinator which is plugged via a Sparkfun XBee Arduino Shield (https://www.sparkfun.com/products/10854) to the Arduino UNO. The Communication works fine. Every Request Packet is sending out to the Remote. And for every Request Packet a Remote Packet is received. I checked this with a Serial Monitor and a RS232<-> TTL Converter. But in my Arduino Software it seems to be that only one Remote Packet is received. Curious is the point that when I send the Request Packets in the time the Remote is sleeping than I read three Response if it is awake and takes the Requests from the Coordinator.
Does anyone try the same or hase the same problems? I've tried so much until know another Baudrate, delays befor sending out. Nothing works.
My recollection of ZigBee and/or 802.15.4 is that the parent node for a sleepy end device will only hold/queue a single frame for when the sleepy device wakes up. And note that in ZigBee it's only guaranteed to queue it for 7.5 seconds. You may need to modify your code to send a single Remote AT Request at a time, and wait for the response before sending another.
This page has a good description about how the MAC layer works:
Once the frame is assembled, there are actually two ways to send it.
If its going to another router or an end device whose receiver is
always on, the frame will be sent directly via the radio. Otherwise,
if the destination is a sleepy end device, the frame will need to be
sent as an indirect transfer. The frame will go to the indirect queue
until the destination device wakes up and polls the parent. Once the
poll comes in, the frame will get sent to the destination.
It would be great if the XBee module supported a frame type that contains multiple AT commands, but as far as I can tell, that isn't an option.

How to create a tunnel between two half-duplex serial ports?

I am working on an embedded project which includes two half duplex UARTS, and one full duplex UART.
UART1 is connected to Device A. UART2 is connected to Device B, and UART3 is connected to the PC. UART1 and UART2 are half-duplex, thus RX/TX modes have to be configured properly.
When a signal on UART1 is triggered, UART2 fetches some data from Device B. That data is put into a buffer, and then transmitted back to UART1, AND UART3. Device A consumes the data, and sends more items on UART1, which then has to be passed to UART2 for Device B to respond.
I was thinking about an efficient state machine that can handle the switching modes between TX/RX mode, and so far my UART code is interrupt driven. What would be some ways to tackle the flow of this program?
I don't think you will need a state machine for this case. Why not just hook up all interrupts accordingly and just forward anything received from one devivce to the other(s)?
You may want to include a TX (ring-)buffer to accomodate for different speeds of each UART and then just have a RX-ISR write the data received to the appropriate TX buffer(s), from where it will then be consumed by the other UARTs' UDRE-ISRs.

PySerial: Create serial object without opening port

I'm running some code on Arduino, I have website with a slider which uses a cgi script to pass values to Python. Then the python script uses pySerial to send the values to Arduino which controls a motor.
The plan was to be able to control the motor speed using the slider on the website.
However I seem to be coming up against a problem of the Arduino resetting whenever I change a value on the website, causing the motor to stop. Is there any way around this? My python code is below.
#!/usr/bin/env python
import cgi
form=cgi.FieldStorage()
import json
ser = serial.Serial('dev/ttyACM0', 9600)
#I think there should be a sleep here for 1.5 seconds
ser.write("%s\n" % (form["value"]))
ser.close()
print "Content-type: application/json"
print
print(json.JSONEncoder().encode({"status":"ok"}))
So, say I have the motor running at 50% speed, then change a value on the website, it runs this script which executes the serial.Serial('dev/ttyACM0', 9600) command. That opens the port which resets the arduino, stopping the motor before passing the new command.
Is there any way to pass ser.write("%s\n" % (form["value"])) to the arduino without freshly opening the port? Such as leaving the port open between python sessions?
If not, is there any other way around this problem?
I believe the reset is due to a hardware design of the specific Arduino device you are using. I suggest using an Arduino Micro or Leonardo board instead. They use a virtual serial port and should not restart your sketch each time a serial port is opened. This is from the Arduino site:
No reset when you open the serial port.
Unlike the Arduino Uno, the Leonardo and Micro won't restart your
sketch when you open a serial port on the computer. That means you
won't see serial data that's already been sent to the computer by the
board, including, for example, most data sent in the setup() function.
Serial re-enumeration on reset.
Since the boards do not have a dedicated chip to handle serial
communication, it means that the serial port is virtual -- it's a
software routine, both on your operating system, and on the board
itself. Just as your computer creates an instance of the serial port
driver when you plug in any Arduino, the Leonardo/Micro creates a
serial instance whenever it runs its bootloader. The board is an
instance of USB's Connected Device Class (CDC) driver. This means that
every time you reset the board, the USB serial connection will be
broken and re-established. The board will disappear from the list of
serial ports, and the list will re-enumerate. Any program that has an
open serial connection to the Leonardo will lose its connection. This
is in contrast to the Arduino Uno, with which you can reset the main
processor (the ATmega328P) without closing the USB connection (which
is maintained by the secondary ATmega8U2 or ATmega16U2 processor).
This difference has implications for driver installation, uploading,
and communication...
I you might be able to use the setDTR(False), but I have tested this yet. A while back they fixed the bug that were initially associated with setDTR. What operating system are you use this on?
ser = serial.Serial('dev/ttyACM0', 9600)
ser.timeout = 1
ser.setDTR(False)
Let us know if this does not work.

8051 UART, Receiving bytes serially

I have to send file byte-by-byte to serially connected AT89s52 from computer (VB.NET).
Every sended byte have some job to do in microcontroller what require some time.
Here is relevant part of my C code to receiving bytes:
SCON = 0x50;
TMOD = 0x20; // timer 1, mode 2, 8-bit reload
TH1 = 0xFD; // reload value for 9600 baud
TR1 = 1;
TI = 1;
again:
while(RI!=0)
{
P1=SBUF; // show data on led's
RI=0;
receivedBytes++;
}
if (key1==0)
{
goto exitreceive; // break receiving
}
show_lcd_received_bytes(receivedBytes);
// here is one more loop
// with different duration for every byte
goto again;
And here is VB.NET code for sending bytes:
For a As Integer = 1 To 10
For t As Integer = 0 To 255
SerialPort1.Write(Chr(t))
Next t
Next a
Problem is that mC have some job to do after every received byte and VB.NET don't know for that and send bytes too fast so in mC finishes just a part of all bytes (about 10%).
I can incorporate "Sleep(20)" in VB loop ant then thing will work but I have many of wasted time because every byte need different time to process and that would be unacceptable slow communication.
Now, my question is if 8051 can set some busy status on UART which VB can read before sending to decide to send byte or not.
Or how otherwise to setup such communication as described?
I also try to receive bytes with serial interrupt on mC side with same results.
Hardware is surely OK because I can send data to computer well (as expected).
Your problem is architectural. Don't try to do processing on the received data in the interrupt that handles byte Rx. Have your byte Rx interrupt only copy the received byte to a separate Rx data buffer, and have a background task that does the actual processing of the incoming data without blocking the Rx interrupt handler. If you can't keep up due to overall throughput issue, then RTS/CTS flow control is the appropriate mechanism. For example, when your Rx buffer gets 90% full, deassert the flow control signal to pause the transmit side.
As #TJD mentions hardware flow control can be used to stop the PC from sending characters while the microcomputer is processing received bytes. In the past I have implemented hardware flow by using an available port line as an output. The output needs to be connected to an TTL to RS-232 driver(if you are currently using a RS-232 you may have and extra driver available). If you are using a USB virtual serial port or RS-422/485 you will need to implement software flow control. Typically a control-S is sent to tell the PC to stop sending and a control-Q to continue. In order to take full advantage of flow control you most likely will need to also implement a fully interrupt driven FIFO to receive/send characters.
If you would like additional information concerning hardware flow control, check out http://electronics.stackexchange.com.
Blast from the past, I remember using break out boxes to serial line tracers debugging this kind of stuff.
With serial communication, if you have all the pins/wires utililzed then there is flow control via the RTS (Ready To Send) and DTR (Data Terminal Ready) that are used to signal when it is OK to send more data. Do you have control over that in the device you are coding via C? IN VB.NET, there are events used to receive these signals, or they can be queried using properties on the SerialPort object.
A lot of these answers are suggesting hardware flow control, but you also have the option of enhancing your transmission to be more robust by using software flow control. Currently, your communication is strong, but if you start running a higher baud rate or a longer distance or even just have a noisy connection, characters could be received that are incorrect, or characters could be dropped.
You could add a simple two-byte ACK sequence upon completion of whatever action is set to happen. It could look something like this:
Host sends command byte: <0x00>
Device echoes command byte: <0x00>
Device executes whatever action is needed
Device sends ACK/NAK byte (based on result):
This would allow you to see on the host side if communication is breaking down. The echoed character may mismatch what was sent which would alert you to an issue. Additionally, if a character is not received by the host within some timeout, the host can try retransmitting. Finally, the ACK/NAK gives you the option of returning a status, but most importantly it will let the host know that you've completed the operation and that it can send another command.
This can be extended to include a checksum to give the device a way to verify that the command received was valid (A simple logical inverse sent alongside the command byte would be sufficient).
The advantage to this solution is that it does not require extra lines or UART support on either end for hardware flow control.