I want to adapt this Recurrent Neural Network in Tensorflow (from this tutorial
https://github.com/aymericdamien/TensorFlow-Examples/
and then the RNN program)
), so that it will be a denoising autoencoder.
I have 5 time steps, and at each time, the noiseless target is sampled from sin(x), and the noisy input is sin(x)+ Gaussian error.
Now my problem is that the RNN from the example gives me 1 output value for each sequence of inputs, but I want an output for each time step ( I want 5 outputs, not 1)
How do I do this? I suspect it may be a matter of redefining the weights and biases, but how?
Here is the code. Many thanks for your help,
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import numpy as np
# Parameters
learning_rate = 0.0005
training_iters = 1000
batch_size = 3
display_step = 100
# Network Parameters
n_input = 2
n_output = 2
n_steps = 5 # timesteps
n_hidden = 40 # hidden layer num of features
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_input])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_output]))
}
biases = {
'out': tf.Variable(tf.random_normal([ n_output]))
}
# length of time series to be sampled
N = 1000000
dim_input = 2
x1 = np.zeros(N)
x2 = np.zeros(N)
y1 = np.zeros(N)
y2 = np.zeros(N)
# generate data
for i in range(0,N):
# clean
y1[i] = np.math.sin(i)
y2[i] = np.math.cos(i)
# noisy
x1[i] = y1[i]+np.random.normal(loc=0.0, scale=0.05)
x2[i] = y2[i]+np.random.normal(loc=0.0, scale=0.05)
def next_batch():
batch = np.empty([batch_size,n_steps,dim_input])
batch_y = np.empty([batch_size,n_steps,dim_input])
# for plotting purposes only
inits = np.empty([batch_size], dtype=int)
for b in range(0,batch_size):
# the first one of the batch
inits[b] = int(np.round(np.random.uniform(low=0,high=N-n_steps- 1)))
init = inits[b]
for i in range(0,n_steps):
# noisy input
batch[b,i,0] = x1[init + i]
batch[b,i,1] = x2[init + i]
# target (no noise)"
batch_y[b,i,0] = y1[init+i]
batch_y[b,i,1] = y2[init+i]
return(batch,batch_y,inits)
def RNN(x, weights, biases):
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
# Define loss and optimizer
# SSE, there must be an easier way to do this
def get_cost(prediction,truth):
z = 0
for i in range(0,batch_size):
z = z + np.square(np.add(prediction[i,:], np.multiply(-1,truth[i,:])))
z = np.add(z[0],z[1])
z = np.sum(z)
return(z)
cost = get_cost(pred,y)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).
minimize(cost)
# Evaluate model
accuracy = cost
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
print('step '+ str(step))
batch_x, batch_y, inits = next_batch()
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print(loss)
step += 1
print("Optimization Finished!")
If I run this, I get this error message:
ValueError: Shape (?, 5, 2) must have rank 2. This seems fair enough, because the target is 5 steps long, and the output only 1. But how do I fix that?
Many thanks.
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import numpy as np
import matplotlib.pyplot as plt
## Denoising autoencoder.
import numpy as np
count = 0
# length of time series to be sampled
N = 10000
x1 = np.zeros(N)
x2 = np.zeros(N)
y1 = np.zeros(N)
y2 = np.zeros(N)
batch_size = 30
learning_rate = 0.0005
training_iters = 300000
display_step = 100
# Network Parameters
n_input = 2
n_output = 2
n_steps = 15 # timesteps
n_hidden = 75 # hidden layer num of
# generate data
for i in range(0,N):
# clean
y1[i] = np.math.sin(i)
y2[i] = np.math.cos(i)
# noisy
x1[i] = y1[i]+np.random.normal(loc=0.0, scale=0.1)
x2[i] = y2[i]+np.random.normal(loc=0.0, scale=0.1)
def next_batch():
batch = np.empty([batch_size,n_steps,n_input])
batch_y = np.empty([batch_size,n_steps,n_input])
# for plotting purposes only
inits = np.empty([batch_size], dtype=int)
for b in range(0,batch_size):
# the first one of the batch
inits[b] = int(np.round(np.random.uniform(low=0,high=N-n_steps-1)))
init = inits[b]
for i in range(0,n_steps):
# noisy input
batch[b,i,0] = x1[init + i]
batch[b,i,1] = x2[init + i]
# target (no noise)"
batch_y[b,i,0] = y1[init+i]
batch_y[b,i,1] = y2[init+i]
return(batch,batch_y,inits)
# Parameters
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_output])
N_train = N - 500
def RNN(x):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.LSTMCell(num_units = n_hidden, forget_bias=1.0, num_proj=2)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
return outputs
print(x)
pred = RNN(x)
# Define loss and optimizer
def get_cost(prediction,truth):
#print('pred' + str(prediction))
# SSE. there must be an easier way than this:
z = 0
for step in range(0,n_steps):
for b in range(0,batch_size):
for y_dim in range(0,2):
d1 = prediction[step][b,y_dim]
d2 = truth[b,step,y_dim]
diff= (d1 - d2 )
z = z + diff * diff
return(z)
cost = get_cost(pred,y)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
#print('step '+ str(step))
batch_x, batch_y, inits = next_batch()
# Reshape data to get 28 seq of 28 elements
#batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print(str(step) + ':' + str(loss))
step += 1
print("Optimization Finished!")
batch_size = 1
test_data, test_label, inits = next_batch()
#print "Testing Accuracy:", \
#sess.run(accuracy, feed_dict={x: test_data, y: test_label})
p2 = sess.run(pred, feed_dict={x: test_data, y: test_label})
#print('---inits---')
#print(inits)
print('---batch---')
print(test_data)
print('---truth---')
print(test_label)
print('---pred---')
print(p2)
c_final = get_cost(p2, test_label)
print(c_final)
First, we generate some data: a 2-dimensional series of sin(i) and cos(i), with i running from 1 to N. This gives us the variable y. Then we add some Normal noise to this series, and that's x. Then, we train a Recurrent Neural Net to create the clean output from the noisy input. In other words, we train the net such that it will output [cos(i),sin(i)] from input [cos(i)+e1,sin(i)+e2) ]. This is a plain vanilla denoising autoencoder, except that the data has a time element. Now you can feed new data into the neural net, and it will hopefully remove the noise.
Related
I have an error like this:
InvalidArgumentError (see above for traceback): logits and labels must
be same size: logits_size=[10,9] labels_size=[7040,9] [[Node:
SoftmaxCrossEntropyWithLogits =
SoftmaxCrossEntropyWithLogits[T=DT_FLOAT,
_device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Reshape_1)]]
But I can't find the tensor which occurs this error.... I think it is appeared by size mismatching...
My Input size is batch_size * n_steps * n_input
so, It will be 10*704*100, And I want to make the output
batch_size * n_steps * n_classes => It will by 10*700*9, by Bidirectional RNN
How should I change this code to fix the error?
batch_size means the number of datas like this:
data 1 : ABCABCABCAAADDD...
...
data 10 : ABCCCCABCDBBAA...
And
n_step means the length of each data ( The data was padded by 'O' to fix the length of each data) : 704
And
n_input means the data how to express the each alphabet in each data like this:
A - [1, 2, 1, -1, ..., -1]
And the output of the learning should be like this:
output of data 1 : XYZYXYZYYXY ...
...
output of data 10 : ZXYYRZYZZ ...
the each alphabet of output was effected by the surrounding and sequence of alphabet of input.
learning_rate = 0.001
training_iters = 100000
batch_size = 10
display_step = 10
# Network Parameters
n_input = 100
n_steps = 704 # timesteps
n_hidden = 50 # hidden layer num of features
n_classes = 9
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def BiRNN(x, weights, biases):
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
# Forward direction cell
lstm_fw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Backward direction cell
lstm_bw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception: # Old TensorFlow version only returns outputs not states
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = BiRNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
while step * batch_size < training_iters:
batch_x, batch_y = next_batch(batch_size, r_big_d, y_r_big_d)
#batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
test_x, test_y = next_batch(batch_size, v_big_d, y_v_big_d)
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_x, y: test_y}))
The first return value of static_bidirectional_rnn is a list of tensors - one for each rnn step. By using only the last one in your tf.matmul you're losing all the rest. Instead, stack them into a single tensor of the appropriate shape, reshape for the matmul then shape back.
outputs = tf.stack(outputs, axis=1)
outputs = tf.reshape(outputs, (batch_size*n_steps, n_hidden))
outputs = tf.matmul(outputs, weights['out']) + biases['out']
outputs = tf.reshape(outputs, (batch_size, n_steps, n_classes))
Alternatively, you could use tf.einsum:
outputs = tf.stack(outputs, axis=1)
outputs = tf.einsum('ijk,kl->ijl', outputs, weights['out']) + biases['out']
I am predicting financial time series with different time periods using tensorflow. In order to divide input data, I made sub-samples and used for loop.
However, I got an ValueError like this;
ValueError: Variable rnn/basic_lstm_cell/weights already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
Without subsample this code works well.
Below is my code.
import tensorflow as tf
import numpy as np
import matplotlib
import os
import matplotlib.pyplot as plt
class lstm:
def __init__(self, x, y):
# train Parameters
self.seq_length = 50
self.data_dim = x.shape[1]
self.hidden_dim = self.data_dim*2
self.output_dim = 1
self.learning_rate = 0.0001
self.iterations = 5 # originally 500
def model(self,x,y):
# build a dataset
dataX = []
dataY = []
for i in range(0, len(y) - self.seq_length):
_x = x[i:i + self.seq_length]
_y = y[i + self.seq_length]
dataX.append(_x)
dataY.append(_y)
train_size = int(len(dataY) * 0.7977)
test_size = len(dataY) - train_size
trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)])
trainY, testY = np.array(dataY[0:train_size]), np.array(dataY[train_size:len(dataY)])
print(train_size,test_size)
# input place holders
X = tf.placeholder(tf.float32, [None, self.seq_length, self.data_dim])
Y = tf.placeholder(tf.float32, [None, 1])
# build a LSTM network
cell = tf.contrib.rnn.BasicLSTMCell(num_units=self.hidden_dim,state_is_tuple=True, activation=tf.tanh)
outputs, _states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
self.Y_pred = tf.contrib.layers.fully_connected(outputs[:, -1], self.output_dim, activation_fn=None)
# We use the last cell's output
# cost/loss
loss = tf.reduce_sum(tf.square(self.Y_pred - Y)) # sum of the squares
# optimizer
optimizer = tf.train.AdamOptimizer(self.learning_rate)
train = optimizer.minimize(loss)
# RMSE
targets = tf.placeholder(tf.float32, [None, 1])
predictions = tf.placeholder(tf.float32, [None, 1])
rmse = tf.sqrt(tf.reduce_mean(tf.square(targets - predictions)))
# training
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
# Training step
for i in range(self.iterations):
_, step_loss = sess.run([train, loss], feed_dict={X: trainX, Y: trainY})
# prediction
train_predict = sess.run(self.Y_pred, feed_dict={X: trainX})
test_predict = sess.run(self.Y_pred, feed_dict={X: testX})
return train_predict, test_predict
# variables definition
tsx = []
tsy = []
tsr = []
trp = []
tep = []
x = np.loadtxt('data.csv', delimiter=',') # data for analysis
y = x[:,[-1]]
z = np.loadtxt('rb.csv', delimiter=',') # data for time series
z1 = z[:,0] # start cell
z2 = z[:,1] # end cell
for i in range(1): # need to change to len(z)
globals()['x_%s' % i] = x[int(z1[i]):int(z2[i]),:] # definition of x
tsx.append(globals()["x_%s" % i])
globals()['y_%s' % i] = y[int(z1[i])+1:int(z2[i])+1,:] # definition of y
tsy.append(globals()["y_%s" % i])
globals()['a_%s' % i] = lstm(tsx[i],tsy[i]) # definition of class
globals()['trp_%s' % i],globals()['tep_%s' % i] = globals()["a_%s" % i].model(tsx[i],tsy[i])
trp.append(globals()["trp_%s" % i])
tep.append(globals()["tep_%s" % i])
Everytime the model method is called, you are building the computational graph of your LSTM. The second time the model method is called, tensorflow discovers that you already created variables with the same name. If the reuse flag of the scope in which the variables are created, is set to False, a ValueError is raised.
To solve this problem you have to set the reuse flag to True by calling tf.get_variable_scope().reuse_variables() at the end of your loop.
Note that you can't add this in the beginning of your loop, because then you are trying to reuse variables that have not yet been created.
You find more info in the tensorflow docs here
You define some variables in the "model" function.
Try this when you want to call "model" function multiple times:
with tf.variable_scope("model_fn") as scope:
train_predict, test_predict = model(input1)
with tf.variable_scope(scope, reuse=True):
train_predict, test_predict = model(input2)
I am trying to build a linear classifier with CIFAR - 100 using TensorFlow. I got the code from Martin Gorner's MNIST tutorial and change a bit. When I run this code, tensorflow does not training (code is running but accuracy remains 1.0 and loss(cross entropy remains as 4605.17), I don't know what is wrong, I am actually newbie to TF any help is appreciated.
import pickle
import numpy as np
import os
import tensorflow as tf
from tensorflow.python.framework import tensor_util
import math
#imports data
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
cifar100_test = {}
cifar100_train = {}
labelMap = {}
labelNames = {}
# Load the raw CIFAR-10 data.
cifar100_test = unpickle('dataset/cifar-100-python/test')
cifar100_train = unpickle('dataset/cifar-100-python/train')
labelMap = unpickle('dataset/cifar-100-python/meta')
#tr for training data and te for testing data, X is data, Y is label
Xtr = cifar100_train[b'data']
Yr = cifar100_train[b'fine_labels']
Xte = cifar100_test[b'data']
Ye = cifar100_test[b'fine_labels']
classNames = labelMap[b'fine_label_names']
num_train = Xtr.shape[0]
num_test = Xte.shape[0]
num_class = len(classNames)
Ytr = np.zeros([num_train, num_class])
Yte = np.zeros([num_test, num_class])
Ytr[0:num_train, Yr[0:num_train]] = 1
Yte[0:num_test, Ye[0:num_test]] = 1
# As a sanity check, we print out the size of the training and test data.
print('Train data shape:', Xtr.shape)
print('Train Label shape:', Ytr.shape)
print('Test data shape:', Xte.shape)
print('Test Label shape:', Yte.shape)
print('Name of Predicted Class:', classNames[0]) #indice of the label name is the indice of the class.
Xtrain = Xtr#[:1000]
Xtest = Xte#[:100]
Ytrain = Ytr#[:1000]
Ytest = Yte#[:100]
print('Train data shape:', Xtrain.shape)
print('Train Label shape:', Ytrain.shape)
print('Test data shape:', Xtest.shape)
print('Test Label shape:', Ytest.shape)
Xtrain = np.reshape(Xtrain,(50000, 32, 32, 3)).transpose(0,1,2,3).astype(float)
Xtest = np.reshape(Xtest,(10000, 32, 32, 3)).transpose(0,1,2,3).astype(float)
Xbatches = np.split(Xtrain, 500); #second number is # of batches
Ybatches = np.split(np.asarray(Ytrain), 500);
XtestB = np.split(Xtest, 100);
YtestB = np.split(Ytest, 100);
print('X # of batches:', len(Xbatches))
print('Y # of batches:', len(Ybatches))
# input X: 28x28 grayscale images, the first dimension (None) will index the images in the mini-batch
X = tf.placeholder(tf.float32, [100, 32, 32, 3])
# correct answers will go here
Y_ = tf.placeholder(tf.float32, [100, 100])
# weights W[784, 10] 784=28*28
W = tf.Variable(tf.zeros([3072, 100]))
# biases b[10]
b = tf.Variable(tf.zeros([100]))
# flatten the images into a single line of pixels
# -1 in the shape definition means "the only possible dimension that will preserve the number of elements"
XX = tf.reshape(X, [-1, 3072])
# The model
Y = tf.nn.softmax(tf.matmul(XX, W) + b)
# loss function: cross-entropy = - sum( Y_i * log(Yi) )
# Y: the computed output vector
# Y_: the desired output vector
# cross-entropy
# log takes the log of each element, * multiplies the tensors element by element
# reduce_mean will add all the components in the tensor
# so here we end up with the total cross-entropy for all images in the batch
cross_entropy = -tf.reduce_mean(Y_ * tf.log(Y)) * 1000.0 # normalized for batches of 100 images,
# *10 because "mean" included an unwanted division by 10
# accuracy of the trained model, between 0 (worst) and 1 (best)
correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(Y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# training, learning rate = 0.005
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# init
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(500):
# the backpropagation training step
t, Loss = sess.run([train_step, cross_entropy], feed_dict={X: Xbatches[i], Y_: Ybatches[i]})
print(Loss)
print(i)
for i in range(100):
print('accuracy:', sess.run(accuracy, feed_dict={X: XtestB[i], Y_: YtestB[i]}))
You compute the accuracy a hundred times after the training process is completed. Nothing will change there. You should place your print('accuracy:'....) within the for loop in which you perform the backpropagation:
for i in range(500):
# the backpropagation training step
t, Loss = sess.run([train_step, cross_entropy], feed_dict={X: Xbatches[i], Y_: Ybatches[i]})
print(Loss)
print(i)
print('accuracy:', sess.run(accuracy, feed_dict={X: XtestB[i], Y_: YtestB[i]}))
Sorry for the post it turns out that it is a basic mistake.
I changed following;
Ytr[0:num_train, Yr[0:num_train]] = 1
Yte[0:num_test, Ye[0:num_test]] = 1
with
Ytr[range(num_train), Yr_temp[range(num_train)]] = 1
Yte[range(num_test), Ye_temp[range(num_test)]] = 1
First one make all values 1, but I just wanted to make indice of the true class 1 and other elements 0. Thanks for your time.
I'm trying to implement metrics learning using Contrastive Loss like in Caffe example and plot results like in example:
(source: researchgate.net)
I tried to use simple fully connected layers in Caffe and it works well (result as on picture above),
but I get different result
Could anyone help me to find issue in my code or suggest how to implement Caffe example in Tensorflow.
Here is my code:
# In[1]:
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import initializers
from tensorflow.examples.tutorials.mnist import input_data
from math import sqrt
import numpy as np
from sklearn.manifold import TSNE
get_ipython().magic('matplotlib inline')
get_ipython().magic('pylab inline')
# In[2]:
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
# In[3]:
learning_rate = 0.00001
training_epochs = 15
batch_size = 100
display_step = 1
logs_path = './tensorflow_logs/mnist_metrics'
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 28*28 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
margin = 1.0
# In[4]:
x_left = tf.placeholder(tf.float32, shape=[None, n_input], name='InputDataLeft')
x_right = tf.placeholder(tf.float32, shape=[None, n_input], name='InputDataRight')
label = tf.placeholder(tf.float32, shape=[None, 1], name='LabelData') # 0 if the same, 1 is different
x_image_left = x_left
x_image_right = x_right
# In[5]:
# def NN(inputs):
# In[6]:
def tfNN(x, weights, biases):
x = tf.scalar_mul(1.0/256.0, x)
layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
layer_3 = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
out_layer = tf.add(tf.matmul(layer_3, weights['w4']), biases['b4'])
return out_layer
# In[7]:
# Store layers weight & bias
weights = {
'w1': tf.Variable(tf.random_uniform([n_input, n_hidden_1], minval=-4*np.sqrt(6.0/(n_input + n_hidden_1)), maxval=4*np.sqrt(6.0/(n_input + n_hidden_1))), name='W1'),
'w2': tf.Variable(tf.random_uniform([n_hidden_1, n_hidden_2], minval=-4*np.sqrt(6.0/(n_hidden_1 + n_hidden_2)), maxval=4*np.sqrt(6.0/(n_hidden_1 + n_hidden_2))), name='W2'),
'w3': tf.Variable(tf.random_uniform([n_hidden_2, n_classes], minval=-4*np.sqrt(6.0/(n_hidden_2 + n_classes)), maxval=4*np.sqrt(6.0/(n_hidden_2 + n_classes))), name='W3'),
'w4': tf.Variable(tf.random_uniform([n_classes, 2], minval=-4*np.sqrt(6.0/(n_classes + 2)), maxval=4*np.sqrt(6.0/(n_classes + 2))), name='W4')
}
biases = {
'b1': tf.Variable(tf.truncated_normal([n_hidden_1]) / sqrt(n_hidden_1), name='b1'),
'b2': tf.Variable(tf.truncated_normal([n_hidden_2]) / sqrt(n_hidden_2), name='b2'),
'b3': tf.Variable(tf.truncated_normal([n_classes]) / sqrt(n_classes), name='b3'),
'b4': tf.Variable(tf.truncated_normal([2]) / sqrt(2), name='b4')
}
# In[8]:
with tf.name_scope('Model'):
# Model
pred_left = tfNN(x_image_left, weights, biases)
pred_right = tfNN(x_image_right, weights, biases)
with tf.name_scope('Loss'):
# Minimize error using cross entropy
# cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
d = tf.reduce_sum(tf.square(pred_left - pred_right), 1)
d_sqrt = tf.sqrt(d)
loss = label * tf.square(tf.maximum(0.0, margin - d_sqrt)) + (1 - label) * d
loss = 0.5 * tf.reduce_mean(loss)
with tf.name_scope('AdamOptimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# In[9]:
# Initializing the variables
init = tf.global_variables_initializer()
# Create a summary to monitor cost tensor
tf.scalar_summary("loss", loss)
# Merge all summaries into a single op
merged_summary_op = tf.merge_all_summaries()
# In[10]:
# Launch the graph
sess = tf.Session()
sess.run(init)
# op to write logs to Tensorboard
summary_writer = tf.train.SummaryWriter(logs_path, graph=tf.get_default_graph())
# Training cycle
for epoch in range(training_epochs):
avg_loss = 0.0
total_batch = int(mnist.train.num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
left_batch_xs, left_batch_ys = mnist.train.next_batch(batch_size)
right_batch_xs, right_batch_ys = mnist.train.next_batch(batch_size)
labels = np.zeros((batch_size, 1))
for l in range(batch_size):
if left_batch_ys[l] == right_batch_ys[l]:
labels[l, 0] = 0.0
else:
labels[l, 0] = 1.0
_, l, summary = sess.run([optimizer, loss, merged_summary_op],
feed_dict = {
x_left: left_batch_xs,
x_right: right_batch_xs,
label: labels,
})
# Write logs at every iteration
summary_writer.add_summary(summary, epoch * total_batch + i)
# Compute average loss
avg_loss += l / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "loss =", "{:.9f}".format(avg_loss))
print ("Optimization Finished!")
print ("Run the command line:\n" "--> tensorboard --logdir=./tensorflow_logs " "\nThen open http://0.0.0.0:6006/ into your web browser")
# In[11]:
# Test model
# Calculate accuracy
test_xs, test_ys = mnist.train.next_batch(5000)
ans = sess.run([pred_left], feed_dict = { x_left: test_xs})
# In[12]:
ans = ans[0]
# In[13]:
#test_ys
# In[14]:
figure(figsize=(10,10))
# scatter(r[:,0], r[:,1], c=[test_ys[x,:].argmax() for x in range(len(test_ys))])
scatter(ans[:,0], ans[:,1], c=test_ys[:])
I found issue in my Contrastive Loss implementation. It requires set keep_dims=True in distance calculation.
Here is correct:
with tf.name_scope('Loss'):
d = tf.reduce_sum(tf.square(tf.sub(pred_left, pred_right)), 1, keep_dims=True)
d_sqrt = tf.sqrt(d)
loss = label * tf.square(tf.maximum(0.0, margin - d_sqrt)) + (1 - label) * d
loss = 0.5 * tf.reduce_mean(loss)
Now I have correct result:
The one-D data concludes 80 samples, with everyone is 1089 length. I want to use 70 samples to training and 10 samples to testing.
I am totally beginner in python and tensorflow, so I use the code which is processing image(which is two-dimension). Here is the code I use(all the parameters are pretty low for I just want to test the code):
import tensorflow as tf
import scipy.io as sc
from tensorflow.python.ops import rnn, rnn_cell
# data read
feature_training = sc.loadmat("feature_training.mat")
feature_training = feature_training['feature_training']
print (feature_training.shape)
feature_testing = sc.loadmat("feature_testing.mat")
feature_testing = feature_testing['feature_testing']
print (feature_testing.shape)
label_training = sc.loadmat("label_training.mat")
label_training = label_training['label_training']
print (label_training.shape)
label_testing = sc.loadmat("label_testing.mat")
label_testing = label_testing['label_testing']
print (label_testing.shape)
# parameters
learning_rate = 0.1
training_iters = 100
batch_size = 70
display_step = 10
# network parameters
n_input = 70 # MNIST data input (img shape: 28*28)
n_steps = 100 # timesteps
n_hidden = 10 # hidden layer num of features
n_classes = 2 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
# Prepare data shape to match `rgnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = feature_training.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
# loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print ("Iter " + str(step*batch_size) + ", Training Accuracy= " +
"{:.5f}".format(acc))
step += 1
print ("Optimization Finished!")
# Calculate accuracy for 10 testing data
test_len = 10
test_data = feature_testing[:test_len].reshape((-1, n_steps, n_input))
test_label = label_testing[:test_len]
print ("Testing Accuracy:",
sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
At last, it turns out the Error:
Traceback (most recent call last):
File "/home/xiangzhang/MNIST data test.py", line 92, in <module>
batch_x, batch_y = feature_training.batch(batch_size)
AttributeError: 'numpy.ndarray' object has no attribute 'next_batch'
I thought it must be related with the dimension of the data, but I do not know how to fix it. Please help me, thanks very much.