I'm trying to create a LinearClassifer with a sparse binary numpy coo matrix (reports) using a SparseTensor. This is with TensorFlow 0.9.0
I do this as follows:
reports_indices = list()
rows,cols = reports.nonzero()
for row,col in zip(rows,cols):
reports_indices.append([row,col])
x_sparsetensor = tf.SparseTensor(
indices=reports_indices,
values=[1] * len(reports_indices),
shape=[reports.shape[0],reports.shape[1]])
The dimensions of reports is 10K by 1.5K.
I then setup the LinearClassifier as follows:
m = tf.contrib.learn.LinearClassifier()
m.fit(x=x_sparsetensor,y=response_vector.todense(),input_fn=None)
Response vector is binary and has a length of 10K. This results in the following error:
Traceback (most recent call last):
File "ddi_prr.py", line 38, in <module>
m.fit(x=x_sparsetensor,y=response_vector.todense(),input_fn=None)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 173, in fit
input_fn, feed_fn = _get_input_fn(x, y, batch_size)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 67, in _get_input_fn
x, y, n_classes=None, batch_size=batch_size)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 117, in setup_train_data_feeder
X, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 240, in __init__
batch_size)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 44, in _get_in_out_shape
x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1]
TypeError: object of type 'Tensor' has no len()
Is my construction incorrect for some reason? It seems that LinearClassifier.fit can't be instantiated with a SparseTensor for x, is that true? Thanks in advance for any help.
As far as I know, passing SparseTensors as x or y arguments to .fit is not supported:
x: matrix or tensor of shape [n_samples, n_features...]. Can be
iterator that returns arrays of features. The training input samples
for fitting the model. If set, input_fn must be None.
Also, SparseTensor is a sparse equivalent of Tensor -- an object representing symbolic computation to be executed. I believe what you would like to use as x is SparseTensorValue.
You can try pass it using other way of passing data to Estimator: input_fn function:
def get_input_fn(sparse_x, y):
def input_fn():
return sparse_x, y
m.fit(input_fn=get_input_fn(x, y))
if it won't work, you may try to produce the SparseTensors inside the input_fn function.
Related
I'm trying yolov3 with multi GPUs...
def evaluate(self):
self.models.eval()
labels = []
sample_metrics = [] # List of tuples (TP, confs, pred)
for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(self.valid_dataloader, desc="Detecting objects")):
# Extract labels
labels += targets[:, 1].tolist()
# Rescale target
targets[:, 2:] = xywh2xyxy(targets[:, 2:])
targets[:, 2:] *= self.img_size
#targets = targets.cuda()
#imgs = Variable(imgs.type(Tensor), requires_grad=False)
imgs = imgs.cuda()
with torch.no_grad():
outputs = self.models(imgs)
outputs = non_max_suppression(outputs, conf_thres=self.conf_thres, nms_thres=self.nms_thres)
sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=self.iou_thres)
# Concatenate sample statistics
true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)
return precision, recall, AP, f1, ap_class
If I use those two commented lines, I will face
TypeError: can’t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first
But if I don't, I will face
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
How to solve?
Trace:
Traceback (most recent call last):
File "D:/Code/DeblurGANv2-master/train.py", line 415, in <module>
trainer.train()
File "D:/Code/DeblurGANv2-master/train.py", line 253, in train
self._run_epoch(epoch)
File "D:/Code/DeblurGANv2-master/train.py", line 287, in _run_epoch
loss_detect = self.calculate()
File "D:/Code/DeblurGANv2-master/train.py", line 224, in calculate
precision, recall, AP, f1, ap_class = self.evaluate()
File "D:/Code/DeblurGANv2-master/train.py", line 160, in evaluate
sample_metrics += get_batch_statistics(outputs, targets,
iou_threshold=self.iou_thres)
File "D:\Code\DeblurGANv2-master\util\utils.py", line 172, in
get_batch_statistics
if pred_label not in target_labels:
File "D:\soft\Anaconda3\envs\DeblurGANv2-master\lib\site-
packages\torch\tensor.py", line 659, in __contains__
return (element == self).any().item() # type: ignore[union-attr]
File "D:\soft\Anaconda3\envs\DeblurGANv2-master\lib\site-
packages\torch\tensor.py", line 27, in wrapped
return f(*args, **kwargs)
RuntimeError: Expected all tensors to be on the same device, but found
at least two devices, cuda:0 and cpu!
I assume the problem is about the sample_metrics, no matter put this tensor on GPU or CPU, there are always problems...
I was looking throw the tensorflow contrib API and I wanted to use the RNNClassifier available with Tensorflow 1.13. Contrary to non sequence estimators, this one needs sequence feature columns only. However I was not able to make it work on a toy dataset. I keep getting an error while using sequence_numeric_column.
Here is the structure of my toy dataset:
idSeq,kind,label,size
0,0,dwarf,117.6
0,0,dwarf,134.4
0,0,dwarf,119.0
0,1,human,168.0
0,1,human,145.25
0,2,elve,153.9
0,2,elve,218.49999999999997
0,2,elve,210.9
1,0,dwarf,166.6
1,0,dwarf,168.0
1,0,dwarf,131.6
1,1,human,150.5
1,1,human,208.25
1,1,human,210.0
1,2,elve,199.5
1,2,elve,161.5
1,2,elve,197.6
where idSeq allow us to see which rows belong to which sequence.
I want to predict the "kind" column thanks to the "size" column.
Below there is my code about make my RNN training on my dataset.
import numpy as np
import pandas as pd
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.logging.set_verbosity(tf.logging.INFO)
dataframe = pd.read_csv("data_rnn.csv")
dataframe_test = pd.read_csv("data_rnn_test.csv")
train_x = dataframe
train_y = dataframe.loc[:,(["kind"])]
size_feature_col = tf.contrib.feature_column.sequence_numeric_column('size ')
estimator = tf.contrib.estimator.RNNClassifier(
sequence_feature_columns=[size_feature_col ],
num_units=[32, 16],
cell_type='lstm',
model_dir=None,
n_classes=3,
optimizer='Adagrad'
)
def make_dataset(
batch_size,
x,
y=None,
shuffle=False,
shuffle_buffer_size=1000,
shuffle_seed=1):
"""
An input function for training, evaluation or prediction.
Parameters
----------------------
batch_size: integer
the size of the batch to use for the training of the neural network
x: pandas dataframe
dataframe that contains the features of the samples to study
y: pandas dataframe or array (Default: None)
dataframe or array that contains the values to predict of the samples
to study. If none, we want a dataset for evaluation or prediction.
shuffle: boolean (Default: False)
if True, we shuffle the elements of the dataset
shuffle_buffer_size: integer (Default: 1000)
if we shuffle the elements of the dataset, it is the size of the buffer
used for it.
shuffle_seed : integer
the random seed for the shuffling
Returns
---------------------
dataset.make_one_shot_iterator().get_next(): Tensor
a nested structure of tf.Tensors containing the next element of the
dataset to study
"""
def input_fn():
if y is not None:
dataset = tf.data.Dataset.from_tensor_slices((dict(x), y))
else:
dataset = tf.data.Dataset.from_tensor_slices(dict(x))
if shuffle:
dataset = dataset.shuffle(
buffer_size=shuffle_buffer_size,
seed=shuffle_seed).batch(batch_size).repeat()
else:
dataset = dataset.batch(batch_size)
return dataset.make_one_shot_iterator().get_next()
return input_fn
batch_size = 50
random_seed = 1
input_fn_train = make_dataset(
batch_size=batch_size,
x=train_x,
y=train_y,
shuffle=True,
shuffle_buffer_size=len(train_x),
shuffle_seed=random_seed)
estimator.train(input_fn=input_fn_train, steps=5000)
But I only got the following error :
INFO:tensorflow:Calling model_fn.
Traceback (most recent call last):
File "main.py", line 125, in <module>
estimator.train(input_fn=input_fn_train, steps=5000)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 358, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1124, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1154, in _train_model_default
features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1112, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/contrib/estimator/python/estimator/rnn.py", line 512, in _model_fn
config=config)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/contrib/estimator/python/estimator/rnn.py", line 332, in _rnn_model_fn
logits, sequence_length_mask = logit_fn(features=features, mode=mode)
File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/contrib/estimator/python/estimator/rnn.py", line 226, in rnn_logit_fn
features=features, feature_columns=sequence_feature_columns)
File "/root/.local/lib/python3.5/site-packages/tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py", line 120, in sequence_input_layer
trainable=trainable)
File "/root/.local/lib/python3.5/site-packages/tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py", line 496, in _get_sequence_dense_tensor
sp_tensor, default_value=self.default_value)
File "/root/.local/lib/python3.5/site-packages/tensorflow/python/ops/sparse_ops.py", line 1432, in sparse_tensor_to_dense
sp_input = _convert_to_sparse_tensor(sp_input)
File "/root/.local/lib/python3.5/site-packages/tensorflow/python/ops/sparse_ops.py", line 68, in _convert_to_sparse_tensor
raise TypeError("Input must be a SparseTensor.")
TypeError: Input must be a SparseTensor.
So I don't understand what I've done wrong because on the documentation, it is written that we have to give a sequence column to the RNNEstimator. They do not say anything about giving sparse tensor.
Thanks in advance for your help and advices.
I am training a network to denoise images, for this I am using the CIFAR10 dataset. I am trying to generate a custom loss function so that the loss is mse / classification_accuracy.
Given that my network receives as input 32x32 (noisy) images and predicts 32x32 (denoised) images, I am assuming that y_pred and Y_true would be arrays of 32x32 images. Thus my custom loss functions looks like this:
def custom_loss():
def joint_optimized_loss(y_true, y_pred):
mse = K.mean(K.square(y_pred - y_true), axis=-1)
preds = classif_model.predict(y_pred)
correctPreds = 0
totPreds = 0
for pred in preds:
predictedClass = pred.index(max(pred))
totPreds += 1
if predictedClass == currentClass:
correctPreds += 1
classifAccuracy = correctPreds / totPreds
loss = mse / classifAccuracy
return loss
return joint_optimized_loss
myModel.compile(optimizer='adadelta', loss=custom_loss())
classif_model is a pre-trained model that classifies CIFAR10 images into one of the 10 classes. It receives an array of 32x32 images.
However when I run my code I get the following error:
Traceback (most recent call last):
File "myCode.py", line 94, in
myModel.compile(optimizer='adadelta', loss=custom_loss())
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 850, in compile
sample_weight, mask)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 450, in weighted
score_array = fn(y_true, y_pred)
File "myCode.py", line 57, in joint_optimized_loss
preds = classif_model.predict(y_pred)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/models.py",
line 913, in predict
return self.model.predict(x, batch_size=batch_size, verbose=verbose)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 1713, in predict
verbose=verbose, steps=steps)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 1260, in _predict_loop
batches = _make_batches(num_samples, batch_size)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 374, in _make_batches
num_batches = int(np.ceil(size / float(batch_size)))
AttributeError: 'Dimension' object has no attribute 'ceil'
I think this has something to do with the fact that y_true and y_pred are both tensors that, before training, are empty thus classif_model.predict fails as it is expecting an array. However I am not sure on how to fix this...
I tried getting instead the value of y_pred using K.get_value(y_pred), but that gives me the following error:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape
[-1,32,32,3] has negative dimensions [[Node: input_1 =
Placeholderdtype=DT_FLOAT, shape=[?,32,32,3],
_device="/job:localhost/replica:0/task:0/cpu:0"]]
You cannot use accuracy as a loss function, as it is not differentiable. This is why upper bounds on accuracy like the cross-entropy are used instead.
Additionally, the way you implemented accuracy is also non-symbolic, you should have used only functions in keras.backend to implement a loss for it to work properly.
I had almost same problem, and I tried this and it worked for me.
Instead of:
preds = classif_model.predict(y_pred)
try:
preds = classif_model(y_pred)
I am not sure about the reason but it is because when we use model.predict(y) it need batch_size and while compiling we don't have any, so we can not use model.predict(y).
Please correct me if this is wrong.
I'm using the Dataset API for input pipelines in TensorFlow (version: r1.2). I built my dataset and batched it with a batch size of 128. The dataset fed into the RNN.
Unfortunately, the dataset.output_shape returns dimension(none) in the first dimension, so the RNN raises an error:
Traceback (most recent call last):
File "untitled1.py", line 188, in <module>
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
File "/home/harold/anaconda2/envs/tensorflow_py2.7/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "untitled1.py", line 121, in main
run_training()
File "untitled1.py", line 57, in run_training
is_training=True)
File "/home/harold/huawei/ConvLSTM/ConvLSTM.py", line 216, in inference
initial_state=initial_state)
File "/home/harold/anaconda2/envs/tensorflow_py2.7/lib/python2.7/site-packages/tensorflow/python/ops/rnn.py", line 566, in dynamic_rnn
dtype=dtype)
File "/home/harold/anaconda2/envs/tensorflow_py2.7/lib/python2.7/site-packages/tensorflow/python/ops/rnn.py", line 636, in _dynamic_rnn_loop
"Input size (depth of inputs) must be accessible via shape inference,"
ValueError: Input size (depth of inputs) must be accessible via shape inference, but saw value None.
I think this error is caused by the shape of input, the first dimension should be batch size but not none.
here is the code:
origin_dataset = Dataset.BetweenS_Dataset(FLAGS.data_path)
train_dataset = origin_dataset.train_dataset
test_dataset = origin_dataset.test_dataset
shuffle_train_dataset = train_dataset.shuffle(buffer_size=10000)
shuffle_batch_train_dataset = shuffle_train_dataset.batch(128)
batch_test_dataset = test_dataset.batch(FLAGS.batch_size)
iterator = tf.contrib.data.Iterator.from_structure(
shuffle_batch_train_dataset.output_types,
shuffle_batch_train_dataset.output_shapes)
(images, labels) = iterator.get_next()
training_init_op = iterator.make_initializer(shuffle_batch_train_dataset)
test_init_op = iterator.make_initializer(batch_test_dataset)
print(shuffle_batch_train_dataset.output_shapes)
I print output_shapes and it gives:
(TensorShape([Dimension(None), Dimension(36), Dimension(100)]), TensorShape([Dimension(None)]))
I suppose that it should be 128, because I have batched dataset:
(TensorShape([Dimension(128), Dimension(36), Dimension(100)]), TensorShape([Dimension(128)]))
This feature has been added with the drop_remainder parameter used like the following:
batch_test_dataset = test_dataset.batch(FLAGS.batch_size, drop_remainder=True)
From the docs:
drop_remainder: (Optional.) A tf.bool scalar tf.Tensor, representing whether the last batch should be dropped in the case its has fewer than batch_size elements; the default behavior is not to drop the smaller batch.
They hardcoded batch size in implementation and it always will return None (tf 1.3).
def _padded_shape_to_batch_shape(s):
return tensor_shape.vector(None).concatenate(
tensor_util.constant_value_as_shape(s))
In this way, they can batch all elements (e.g. dataset_size=14, batch_size=5, last_batch_size=4).
You can use dataset.filter and dataset.map to fix this issue
d = contrib.data.Dataset.from_tensor_slices([[5] for x in range(14)])
batch_size = 5
d = d.batch(batch_size)
d = d.filter(lambda e: tf.equal(tf.shape(e)[0], batch_size))
def batch_reshape(e):
return tf.reshape(e, [args.batch_size] + [s if s is not None else -1 for s in e.shape[1:].as_list()])
d = d.map(batch_reshape)
r = d.make_one_shot_iterator().get_next()
print('dataset_output_shape = %s' % r.shape)
with tf.Session() as sess:
while True:
print(sess.run(r))
Output
dataset_output_shape = (5, 1)
[[5][5][5][5][5]]
[[5][5][5][5][5]]
OutOfRangeError
I am trying to implement a recurrent state tensor using tf.scan. The code I have at the moment is this:
import tensorflow as tf
import math
import numpy as np
INPUTS = 10
HIDDEN_1 = 20
BATCH_SIZE = 3
def iterate_state(prev_state_tuple, input):
with tf.name_scope('h1'):
weights = tf.get_variable('W', shape=[INPUTS, HIDDEN_1], initializer=tf.truncated_normal_initializer(stddev=1.0 / math.sqrt(float(INPUTS))))
biases = tf.get_variable('bias', shape=[HIDDEN_1], initializer=tf.constant_initializer(0.0))
matmuladd = tf.matmul(inputs, weights) + biases
unpacked_state, unpacked_out = tf.split(0,2,prev_state_tuple)
prev_state = unpacked_state
state = 0.9* prev_state + 0.1*matmuladd
output = tf.nn.relu(state)
return tf.concat(0,[state, output])
def data_iter():
while True:
idxs = np.random.rand(BATCH_SIZE, INPUTS)
yield idxs
with tf.Graph().as_default():
inputs = tf.placeholder(tf.float32, shape=(BATCH_SIZE, INPUTS))
with tf.variable_scope('states'):
initial_state = tf.zeros([HIDDEN_1],
name='initial_state')
initial_out = tf.zeros([HIDDEN_1],
name='initial_out')
concat_tensor = tf.concat(0,[initial_state, initial_out])
states, output = tf.scan(iterate_state, inputs,
initializer=concat_tensor, name='states')
sess = tf.Session()
# Run the Op to initialize the variables.
sess.run(tf.initialize_all_variables())
iter_ = data_iter()
for i in xrange(0, 2):
print ("iteration: ",i)
input_data = iter_.next()
out,st = sess.run([output,states], feed_dict={ inputs: input_data})
However, I get this error when running this:
Traceback (most recent call last):
File "cycles_in_graphs_with_scan.py", line 37, in <module>
initializer=concat_tensor, name='states')
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 442, in __iter__
raise TypeError("'Tensor' object is not iterable.")
TypeError: 'Tensor' object is not iterable.
(tensorflow)charlesq#Leviathan ~/projects/stuff $ python cycles_in_graphs_with_scan.py
Traceback (most recent call last):
File "cycles_in_graphs_with_scan.py", line 37, in <module>
initializer=concat_tensor, name='states')
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 442, in __iter__
raise TypeError("'Tensor' object is not iterable.")
TypeError: 'Tensor' object is not iterable.
I've already tried with pack/unpack and concat/split but I get this same error.
Any ideas how to solve this problem?
You're getting an error because tf.scan() returns a single tf.Tensor, so the line:
states, output = tf.scan(...)
...cannot destructure (unpack) the tensor returned from tf.scan() into two values (states and outputs). Effectively, the code is trying to treat the result of tf.scan() as a list of length 2, and assign the first element to states and the second element to output, but—unlike a Python list or tuple—tf.Tensor does not support this.
Instead you need to extract the values from the result of tf.scan() manually. For example, using tf.split():
scan_result = tf.scan(...)
# Assumes values are packed together along `split_dim`.
states, output = tf.split(split_dim, 2, scan_result)
Alternatively, you could use tf.slice() or tf.unpack() to extract the relevant states and output values.