Get Coco Class files programmatically - objective-c

Using the objc/runtime.h we can create classes at runtime. How to export the .h and .m files from that class which is created at runtime?

Creating a .h is conceptually possible, but you'd need to write the code yourself to do it (using ObjC runtime calls to inspect the class and then write the file by hand). I don't know of anyone who has written this code already, but writing it would likely be an excellent introduction to the ObjC runtime functions. Note that the .h probably wouldn't be very friendly. For example, all object types in method signatures will be id. So it's kind of useable, but I can't think of a lot of ways I'd want to.
Creating a .m here doesn't make a lot of sense. The implementation of a runtime-generated class is going to be a bunch of IMP pointers to existing functions (which are themselves already compiled code). I don't know what you'd expect to be in the .m. In principle you could scan the executable to work out the names of the functions, and then write out a .m that looked something like:
- (void)someMethod {
SomeMethod_IMP()
}
This would probably get pretty complicated, and I can imagine several corner cases that would bite you in the general case.
This generally isn't how dynamically-generated classes are used, though, in the fairly rare cases that they are used. They're ubiquitous in KVO (but you'd never want a .h from that), and other uses of them are kind of similar: they usually are some magical subclass of an existing interface, so you never interact with them directly (and they almost always have an identical API to their superclass). What problem are you really trying to solve?

To get the implementation, you'd have to find or write a tool to translate assembly back in to Objective-C.
For just generating a header (interface), there are tools available. Use Google.

You cannot just tell the Objective-C runtime to create a new class from the .h and .m files because it takes a compiler. You need to hard-code the creation inside your project.
Create a subclass with objc_allocateClassPair
Add methods with class_addMethod (and properties with class_addProperty...)
Then you can use the new class.

Related

extending objects at run-time via categories?

Objective-C’s objects are pretty flexible when compared to similar languages like C++ and can be extended at runtime via Categories or through runtime functions.
Any idea what this sentence means? I am relatively new to Objective-C
While technically true, it may be confusing to the reader to call category extension "at runtime." As Justin Meiners explains, categories allow you to add additional methods to an existing class without requiring access to the existing class's source code. The use of categories is fairly common in Objective-C, though there are some dangers. If two different categories add the same method to the same class, then the behavior is undefined. Since you cannot know whether some other part of the system (perhaps even a system library) adds a category method, you typically must add a prefix to prevent collisions (for example rather than swappedString, a better name would likely be something like rnc_swappedString if this were part of RNCryptor for instance.)
As I said, it is technically true that categories are added at runtime, but from the programmer's point of view, categories are written as though just part of the class, so most people think of them as being a compile-time choice. It is very rare to decide at runtime whether to add a category method or not.
As a beginner, you should be aware of categories, but slow to create new ones. Creating categories is a somewhat intermediate-level skill. It's not something to avoid, but not something you'll use every day. It's very easy to overuse them. See Justin's link for more information.
On the other hand, "runtime functions" really do add new functionality to existing classes or even specific objects at runtime, and are completely under the control of code. You can, at runtime, modify a class such that it responds to a method it didn't previously respond to. You can even generate entirely new classes at runtime that did not exist when the program was compiled, and you can change the class of existing objects. (This is exactly how Key-Value Observation is implemented.)
Modifying classes and objects using the runtime is an advanced skill. You should not even consider using these techniques in production code until you have significant experience. And when you have that experience, it will tell you that you very seldom what to do this anyway. You will know the runtime functions because they are C-based, with names like method_exchangeImplmentations. You won't mistake them for normal ObjC (and you generally have to import objc/runtime.h to get to them.)
There is a middle-ground that bleeds into runtime manipulation called message forwarding and dynamic message resolution. This is often used for proxy objects, and is implemented with -forwardingTargetForSelector, +resolveInstanceMethod, and some similar methods. These are tools that allow classes to modify themselves at runtime, and is much less dangerous than modifying other classes (i.e. "swizzling").
It's also important to consider how all of this translates to Swift. In general, Swift has discouraged and restricted the use of runtime class manipulation, but it embraces (and improves) category-like extensions. By the time you're experienced enough to dig into the runtime, you will likely find it an even more obscure skill than it is today. But you will use extensions (Swift's version of categories) in every program.
A category allows you to add functionality to an existing class that you do not have access to source code for (System frameworks, 3rd party APIs etc). This functionality is possible by adding methods to a class at runtime.
For example lets say I wanted to add a method to NSString that swapped uppercase and lowercase letters called -swappedString. In static languages (such as C++), extending classes like this is more difficult. I would have to create a subclass of NSString (or a helper function). While my own code could take advantage of my subclass, any instance created in a library would not use my subclass and would not have my method.
Using categories I can extend any class, such as adding a -swappedString method and use it on any instance of the class, such asNSString transparently [anyString swappedString];.
You can learn more details from Apple's Docs

Stateless static methods vs. C functions in Objective-C

In terms of good Objective-C coding practices, if I create a function that has no state, is it better to write it as a static method of some class or as a C function?
For example, I have a special filepath retrieval method that checks the Caches directory before proceeding to the main NSBundle. I currently have it as a static method under an otherwise empty Utils class. Should this be a C function instead?
The reason I've chosen to use a static method (for now) is that a) it's consistent with Objective-C syntax, and b) the class helps to categorize the method. However, I feel like I'm cheating a little, since I could easily fill up my Util class with these stateless static methods and end up with an ugly "shell class", whose sole purpose would be to hold them.
What convention do you use? Is one "better" than the other, by some objective metric? Thank you!
If you can think of an existing class of which this might make a good method, you can inject your method into it by making an Objective-C category. This keeps your two reasons for using a static method while not polluting the class space with an extra class.
For example:
#interface NSString (MyStringCategories)
- (NSString*) myCoolMethod;
#end
// [StringCategories.m]
#import "StringCategories.h"
#implementation NSString (MyStringCategories)
- (NSString*) myCoolMethod {
// do cool stuff here
return whateverYouLike;
}
#end
Now you can send myCoolMethod to any string. Cool!
In your particular case, it sounds like a method on NSBundle might be an appropriate architecture. And don't forget, it can be a class method, so you don't need to instantiate anything in order to call your method.
This is quite a difficult question to answer because for a lot of people the answer will depend on what their personal preferences and tastes are. I personally think that if you have a function that is a function, i.e. it has nothing to do with an object, it has no internal state etc. pp. please let it be a function and do not try to wrap everything you possibly can into an object just because you are using an OO language and you can.
In order to keep my answer short let me refer to a (imo) quite good book:
http://www.gotw.ca/publications/c++cs.htm
I know that this is for C++, but there are quite a few insights that can be shared with other languages (esp. Objective-C and Objective-C++) especially from the part called "Class Design and Inheritance". There you will find an item titeled "Prefer writing nonmember nonfriend functions".
Bottom line: "Nonmember nonfriend functions improve encapsulation by minimizing dependencies[...] They also break apart monolithic classes[...] [and] improve genericity[...]".
I think there is quite some truth in that item.
If there's no class to clearly bind it to, then I use a function. I also use functions for these utility bits because they can be stripped if not used or referenced. In that regard, it's also helpful to use a function because a link error is better than a runtime error (in the even the .m was accidentally omitted from the build, or if was referenced from another externally updated method). One problem with ObjC symbols is that they do not get stripped, so they naturally carry a high amount of dependency -- all the objc methods and classes, and required category methods must exist in the final binary. That's not an issue with really small programs or libraries, but it quickly gains weight with medium/large systems and libraries.
Everything does not need to be declared in an #interface - especially with larger systems where all those declarations will really turn your interdependencies into spaghetti. Compared to methods, functions are faster, smaller, may be optimized better by the compiler or during linking, and may be stripped if not referenced.
If you need polymorphism, it just belongs in a class for organization or convenience, then a class or instance method is often a better choice.
I also minimize declaring category methods for the same reasons. When you're using functions, you can easily write a wrapper method where you need it and get the best of both worlds.

Discover subclasses of a given class in Obj-C

Is there any way to discover at runtime which subclasses exist of a given class?
Edit: From the answers so far I think I need to clarify a bit more what I am trying to do. I am aware that this is not a common practice in Cocoa, and that it may come with some caveats.
I am writing a parser using the dynamic creation pattern. (See the book Cocoa Design Patterns by Buck and Yacktman, chapter 5.) Basically, the parser instance processes a stack, and instantiates objects that know how to perform certain calculations.
If I can get all the subclasses of the MYCommand class, I can, for example, provide the user with a list of available commands. Also, in the example from chapter 5, the parser has an substitution dictionary so operators like +, -, * and / can be used. (They are mapped to MYAddCommand, etc.) To me it seemed this information belonged in the MyCommand subclass, not the parser instance as it kinda defeats the idea of dynamic creation.
Not directly, no. You can however get a list of all classes registered with the runtime as well as query those classes for their direct superclass. Keep in mind that this doesn't allow you to find all ancestors for the class up the inheritance tree, just the immediate superclass.
You can use objc_getClassList() to get the list of Class objects registered with the runtime. Then you can loop over that array and call [NSObject superclass] on those Class objects to get their superclass' Class object. If for some reason your classes do not use NSObject as their root class, you can use class_getSuperclass() instead.
I should mention as well that you might be thinking about your application's design incorrectly if you feel it is necessary to do this kind of discovery. Most likely there is another, more conventional way to do what you are trying to accomplish that doesn't involve introspecting on the Objective-C runtime.
Rather than try to automatically register all the subclasses of MYCommand, why not split the problem in two?
First, provide API for registering a class, something like +[MYCommand registerClass:].
Then, create code in MYCommand that means any subclasses will automatically register themselves. Something like:
#implementation MYCommand
+ (void)load
{
[MYCommand registerClass:self];
}
#end
Marc and bbum hit it on the money. This is usually not a good idea.
However, we have code on our CocoaHeads wiki that does this: http://cocoaheads.byu.edu/wiki/getting-all-subclasses
Another approach was just published by Matt Gallagher on his blog.
There's code in my runtime browser project here that includes a -subclassNamesForClass: method. See the RuntimeReporter.[hm] files.

When do I define objective-c methods?

I'm learning Objective-C, and have a C/C++ background.
In object-oriented C++, you always need to declare your method before you define (implement) it, even if it is declared in the parent class.
In procedural-style C, IIRC, you can get away with just defining a function so long as it is only called from something else in the same compilational unit (ie. the same file) that came later on in the file (well, provided you don't declare it elsewhere with "extern").
Now, in Objective-C, it appears that you only need to declare selectors in the header file if they are going to be used by something external, and that you can make up selectors in your .m file just fine, and call them within the .m file. Also, it appears that delegate methods or inherited methods are never (re)defined.
Am I on the right track? When do you need to define a selector in Objective-C?
For Objective-C methods, the general practice is to put methods you wish to expose in the #interface section of the header file so other code can include only the .h and know how to interact with your code. Order-based "lazy declaration" works just like functions in C — you don't have to declare a method prototype unless you have a dependency that can't be resolved by ordering, but you can add method prototypes inside the #implementation if needed.
So yes, you're on the right track. Don't repeat the method prototype for inherited methods — the compiler finds it in the parent's header file. Delegate methods may be defined as prototypes in a category (tacked onto a class) and implemented as desired, but the delegate does not need to provide a method prototype, since it is already defined. (It still can if it wants to for clarity, etc.)
Since you're just learning Objective-C, the rest of this answer is much more detail than you asked for. You have been warned. ;-)
When you statically type a variable (e.g. MyClass* instead of id) the compiler will warn you when you try to call a method that a class doesn't advertise that it implements, whether it does or not. If you dynamically type the variable, the compiler won't stop you from calling whatever you like, and you'll only get runtime errors if you call something that doesn't exist. As far as the language is concerned, you can call any method that a class implements without errors at runtime — there is no way to restrict who can call a method.
Personally, I think this is actually a good thing. We get so used to encapsulation and protecting our code from other code that we sometimes treat the caller as a devious miscreant rather than a trustworthy coworker or customer. I find it's quite pleasant to code with a mindset of "you do your job and I do mine" where everyone respects boundaries and takes care of their own thing. You might say that the "attitude" of Objective-C is one of community trust, rather than of strict enforcement. For example, I'm happy to help anyone who comes to my desk, but would get really annoyed if someone messed with my stuff or moved things around without asking. Well-designed code doesn't have to be paranoid or sociopathic, it just has to work well together. :-)
That said, there are many approaches for structuring your interfaces, depending on the level of granularity you want/need in exposing interfaces to users. Any methods you declare in the public header are essentially fair game for anyone to use. Hiding method declarations is a bit like locking your car or house — it probably won't keep everyone out, but (1) it "keeps honest people honest" by not tempting them with something they shouldn't be messing with, and (2) anyone who does get in will certainly know they weren't supposed to, and can't really complain of negative consequences.
Below are some conventions I use for file naming, and what goes in each file — starting from a .m file at the bottom, each file includes the one above it. (Using a strict chain of includes will prevent things like duplicate symbol warnings.) Some of these levels only apply to larger reusable components, such as Cocoa frameworks. Adapt them according to your needs, and use whatever names suit you.
MyClass.h — Public API (Application Programming Interface)
MyClass_Private.h — Company-internal SPI (System Programming Interface)
MyClass_Internal.h — Project-internal IPI (Internal Programming Interface)
MyClass.m — Implementation, generally of all API/SPI/IPI declarations
MyClass_Foo.m — Additional implementation, such as for categories
API is for everyone to use, and is publicly supported (usually in Foo.framework/Headers). SPI exposes additional functionality for internal clients of your code, but with the understanding that support may be limited and the interface is subject to change (usually in Foo.framework/PrivateHeaders). IPI consists of implementation-specific details that should never be used outside the project itself, and these headers are not included in the framework at all. Anyone who chooses to use SPI and IPI calls does so at their own risk, and usually to their detriment when changes break their code. :-)
Declaring the methods in the header file will only stop compiler warnings. Objective-C is a dynamic language, so you can call a method (send a message) to an object whether or not that method is declared externally.
Also, if you define a method in the .m file above any code that calls it (lazy declaration) then that won't generate any warnings. However the same thing applies, you can send a message to an object without it being declared.
Of course - this means that there are no private methods in Objective-C. Any method that a class implements can be called.
Personal preference. If it's a public method (i.e one used externally). declare it in the .h and define in the .m. If you want to limit it's visibility, or at least indicate that it is a private method, use categories/class extensions in the .m file. Although lots of example code uses the lazy declaration method.
Objective-C treats functions as "messages" and as such, you can send a "message" to any object - even one that doesn't explicitly state in its interface that it can accept. As a result, there are no such things as private members in Obj-C.
This can be very powerful, but is a source of confusion for new Obj-C programmers - especially those coming from C++, Java or C#. Here are the basic rules of thumb:
You should define all public methods in your #interface so that consumers know what messages you expect to handle.
You should define #private methods in your #interface to avoid compiler messages and avoid having to order the methods in your #implementation.
You should use protocols when implementing a particular convention of methods for your class.
Much of this is personal preference, however it helps to avoid annoying compiler warnings and keeps your code organized. and easy to understand.

What is the difference between inheritance and Categories in Objective-C

Can some one explain to me the difference between categories and inheritance in Objective C? I've read the entry in Wikipedia and the discussion on categories there doesn't look any different to that of inheritance. I also looked at the discussion on the topic in the book "Open iPhone Development" and I still don't get it.
Sometimes, inheritance just seems like more trouble than it is worth. It is correctly used when you want to add something to an existing class that is a change in the behaviour of that class.
With a Category, you just want the existing object to do a little more. As already given, if you just want to have a string class that handles compression, you don't need to subclass the string class, you just create a category that handles the compression. That way, you don't need to change the type of the string classes that you already use.
The clue is in the restriction that categories only add methods, you can't add variables to a class using categories. If the class needs more properties, then it has to be subclassed.(edit: you can use associative storage, I believe).
Categories are a nice way to add functionality while at the same time conforming to an object oriented principle to prefer composition over inheritance.
Edit January 2012
Things have changed now. With the current LLVM compiler, and the modern, 64-bit runtime, you can add iVars and properties to class extensions (not categories). This lets you keep private iVars out of the public interface. But, if you declare properties for the iVars, they can still be accessed / changed via KVC, because there is still no such thing as a private method in Objective-C.
Categories allow you to add methods to existing classes. So rather than subclass NSData to add your funky new encryption methods, you can add them directly to the NSData class. Every NSData object in your app now has access to those methods.
To see how useful this can be, look at: CocoaDev
One of favorite illustrations of Objective-c categories in action is NSString. NSString is defined in the Foundation framework, which has no notion of views or windows. However, if you use an NSString in a Cocoa application you'll notice it responds to messages like – drawInRect:withAttributes:.
AppKit defines a category for NSString that provides additional drawing methods. The category allows new methods to be added to an existing class, so we're still just dealing with NSStrings. If AppKit instead implemented drawing by subclassing we'd have to deal with 'AppKitStrings' or 'NSSDrawableStrings' or something like that.
Categories let you add application or domain specific methods to existing classes. It can be quite powerful and convenient.
If you as a programmer are given a complete set of source code for a code library or application, you can go nuts and change whatever you need to achieve your programming goal with that code.
Unfortunately, this is not always the case or even desirable. A lot of times you are given a binary library/object kit and a set of headers to make do with.
Then a new functionality is needed for a class so you could do a couple of things:
create a new class whole instead of a stock class -- replicating all its functions and members then rewrite all the code to use the new class.
create a new wrapper class that contains the stock class as a member (compositing) and rewrite the codebase to utilize the new class.
binary patches of the library to change the code (good luck)
force the compiler to see your new class as the old one and hope it does not depend on a certain size or place in memory and specific entry points.
subclass specialization -- create subclasses to add functionality and modify driver code to use the subclass instead -- theoretically there should be few problems and if you need to add data members it is necessary, but the memory footprint will be different. You have the advantage of having both the new code and the old code available in the subclass and choosing which to use, the base class method or the overridden method.
modify the necessary objc class with a category definition containing methods to do what you want and/or override the old methods in the stock classes.
This can also fix errors in the library or customize methods for new hardware devices or whatever. It is not a panacea, but it allows for class method adding without recompiling the class/library that is unchanged. The original class is the same in code, memory size, and entry points, so legacy apps don't break. The compiler simply puts the new method(s) into the runtime as belonging to that class, and overrides methods with the same signature as in the original code.
an example:
You have a class Bing that outputs to a terminal, but not to a serial port, and now that is what you need. (for some reason). You have Bing.h and libBing.so, but not Bing.m in your kit.
The Bing class does all kinds of stuff internally, you don't even know all what, you just have the public api in the header.
You are smart, so you create a (SerialOutput) category for the Bing class.
[Bing_SerialOutput.m]
#interface Bing (SerialOutput) // a category
- (void)ToSerial: (SerialPort*) port ;
#end
#implementation Bing (SerialOutput)
- (void)ToSerial: (SerialPort*) port
{
... /// serial output code ///
}
#end
The compiler obliges to create an object that can be linked in with your app and the runtime now knows that Bing responds to #selector(ToSerial:) and you can use it as if the Bing class was built with that method. You cannot add data members only methods and this was not intended to create giant tumors of code attached to base classes but it does have its advantages over strictly typed languages.
I think some of these answers at least point to the idea that inheritance is a heavier way of adding functionality to an existing class, while categories are more lightweight.
Inheritance is used when you're creating a new class hierarchy (all the bells and whistles) and arguably brings alot of work when chosen as the method of adding functionality to existing classes.
As someone else here put it... If you are using inheritance to add a new method for example to NSString, you have to go and change the type you're using in any other code where you want to use this new method. If, however, you use categories, you can simply call the method on existing NSString types, without subclassing.
The same ends can be achieved with either, but categories seem to give us an option that is simpler and requires less maintenance (probably).
Anyone know if there are situations where categories are absolutely necessary?
A Category is like a mixin: a module in Ruby, or somewhat like an interface in Java. You can think of it as "naked methods". When you add a Category, you're adding methods to the class. The Wikipedia article has good stuff.
The best way to look at this difference is that:
1. inheritance : when want to turn it exactly in your way.
example : AsyncImageView to implement lazy loading. Which is done by inheriting UIView.
2. category : Just want to add a extra flavor to it.
example : We want to replace all spaces from a textfield's text
#interface UITextField(setText)
- (NSString *)replaceEscape;
#end
#implementation UITextField(setText)
- (NSString *)replaceEscape
{
self.text=[self.text stringByTrimmingCharactersInSet:
[NSCharacterSet whitespaceCharacterSet]];
return self.text;
}
#end
--- It will add a new property to textfield for you to escape all white spaces. Just like adding a new dimension to it without completely changing its way.