I'm trying to clear an array after each iteration of a for loop in LabVIEW, but the way I've implemented it has the values not going directly to what I want, but it changes with previous values in other parts of the array.
It isn't shown, but this code is inside of a for-loop that iterates through another numeric array.
I know that if I get the array to clear properly after each loop iteration, this should work. How do I do that? I'm a beginner at Labview but have been coding for awhile - help is appreciated!!!
[![labview add to array][2]][2]
It looks as if you're not quite used to how LabVIEW passes data around yet. There's no need to use lots of value property nodes for the same control or indicator within one structure; if you want to use the same data in more than one place, just branch the wire. Perhaps you're thinking that a LabVIEW control or indicator is equivalent to a variable in text languages, and you need to use a property node to get or set it. Instead, think of the wire as the variable. If you want to pass the output of one operation to the input of another, just wire the output to the input.
The indicators with terminals inside your loop will be updated with new values every loop iteration, and the code inside the loop should execute faster than a human can read those values, so once the loop has finished all the outputs except the final values will be lost. Is that what you intended, or do you want to accumulate or store them in some way?
I can see that in each loop iteration you're reading two values from a config file, and the section is specified by the string value of one element of the numeric array Array. You're displaying the two values in the indicators PICKERING and SUBUNIT. If you can describe in words (or pseudocode, or a text language you're used to) what manipulation of data you're actually trying to do in the rest of this code, we may be able to make more specific suggestions.
First of all, I'm assuming that the desired order of operations is the following:
Putting the value of Pickering into Array 2
Extracting from Array 2 the values to put in Pickering 1 and Pickering 2
Putting Array 2 back to its original value
If this is the case, with your current code you can't be sure that operation 1 will be executed be fore operation 2. In fact, the order of these operations can't be pre-determined. You must force the dataflow, for example by creating a sequence structure. You will put the code related to 1 in the first frame, then code related to operation 2 in the second.
Then, to put Array 2 back to it's original value I would add a third frame, where you force an empty array into the Value property node of Array 2 (the tool you use for pickering, but as input and not as output).
The sequence structure has to be inside the for loop.
I have never used the property node Reinit to default, so I can't help you with that.
Unfortunately I can't run Labview on this PC but I hope my explanation was clear enough, if not tell me and I will try to be more specific.
I'm having trouble reading an unformatted F77 binary file in Python.
I've tried the SciPy.io.FortraFile method and the NumPy.fromfile method, both to no avail. I have also read the file in IDL, which works, so I have a benchmark for what the data should look like. I'm hoping that someone can point out a silly mistake on my part -- there's nothing better than having an idiot moment and then washing your hands of it...
The data, bcube1, have dimensions 101x101x101x3, and is r*8 type. There are 3090903 entries in total. They are written using the following statement (not my code, copied from source).
open (unit=21, file=bendnm, status='new'
. ,form='unformatted')
write (21) bcube1
close (unit=21)
I can successfully read it in IDL using the following (also not my code, copied from colleague):
bcube=dblarr(101,101,101,3)
openr,lun,'bcube.0000000',/get_lun,/f77_unformatted,/swap_if_little_endian
readu,lun,bcube
free_lun,lun
The returned data (bcube) is double precision, with dimensions 101x101x101x3, so the header information for the file is aware of its dimensions (not flattend).
Now I try to get the same effect using Python, but no luck. I've tried the following methods.
In [30]: f = scipy.io.FortranFile('bcube.0000000', header_dtype='uint32')
In [31]: b = f.read_record(dtype='float64')
which returns the error Size obtained (3092150529) is not a multiple of the dtypes given (8). Changing the dtype changes the size obtained but it remains indivisible by 8.
Alternately, using fromfile results in no errors but returns one more value that is in the array (a footer perhaps?) and the individual array values are wildly wrong (should all be of order unity).
In [38]: f = np.fromfile('bcube.0000000')
In [39]: f.shape
Out[39]: (3090904,)
In [42]: f
Out[42]: array([ -3.09179121e-030, 4.97284231e-020, -1.06514594e+299, ...,
8.97359707e-029, 6.79921640e-316, -1.79102266e-037])
I've tried using byteswap to see if this makes the floating point values more reasonable but it does not.
It seems to me that the np.fromfile method is very close to working but there must be something wrong with the way it's reading the header information. Can anyone suggest how I can figure out what should be in the header file that allows IDL to know about the array dimensions and datatype? Is there a way to pass header information to fromfile so that it knows how to treat the leading entry?
I played a bit around with it, and I think I have an idea.
How Fortran stores unformatted data is not standardized, so you have to play a bit around with it, but you need three pieces of information:
The Format of the data. You suggest that is 64-bit reals, or 'f8' in python.
The type of the header. That is an unsigned integer, but you need the length in bytes. If unsure, try 4.
The header usually stores the length of the record in bytes, and is repeated at the end.
Then again, it is not standardized, so no guarantees.
The endianness, little or big.
Technically for both header and values, but I assume they're the same.
Python defaults to little endian, so if that were the the correct setting for your data, I think you would have already solved it.
When you open the file with scipy.io.FortranFile, you need to give the data type of the header. So if the data is stored big_endian, and you have a 4-byte unsigned integer header, you need this:
from scipy.io import FortranFile
ff = FortranFile('data.dat', 'r', '>u4')
When you read the data, you need the data type of the values. Again, assuming big_endian, you want type >f8:
vals = ff.read_reals('>f8')
Look here for a description of the syntax of the data type.
If you have control over the program that writes the data, I strongly suggest you write them into data streams, which can be more easily read by Python.
Fortran has record demarcations which are poorly documented, even in binary files.
So every write to an unformatted file:
integer*4 Test1
real*4 Matrix(3,3)
open(78,format='unformatted')
write(78) Test1
write(78) Matrix
close(78)
Should ultimately be padded by an np.int32 values. (I've seen references that this tells you the record length, but haven't verified persconally.)
The above could be read in Python via numpy as:
input_file = open(file_location,'rb')
datum = np.dtype([('P1',np.int32),('Test1',np.int32),('P2',np.int32),('P3',mp.int32),('MatrixT',(np.float32,(3,3))),('P4',np.int32)])
data = np.fromfile(input_file,datum)
Which should fully populate the data array with the individual data sets of the format above. Do note that numpy expects data to be packed in C format (row major) while Fortran format data is column major. For square matrix shapes like that above, this means getting the data out of the matrix requires a transpose as well, before using. For non square matrices, you will need to reshape and transpose:
Matrix = np.transpose(data[0]['MatrixT']
Transposing your 4-D data structure is going to need to be done carefully. You might look into SciPy for automated ways to do so; the SciPy package seems to have Fortran related utilities which I have not fully explored.
I have created a simple LabView program shown below that attempts to flatten an array [1,0,3] and then unflatten it and print out the contents.
However, I am unsuccessful in doing so. What am I doing wrong?
What am I doing wrong?
You're not going through tutorials or you're not reading the context help for the unflatten function (Ctrl+H) or you're not reading the full help for the function (right click>>Help) or you're not looking at the examples (from the help or Help>>Find Examples). Take your pick (preferably all four).
If you want an actual answer it is that LV is strictly typed, and therefore you need to tell the unflatten function which data type you want it to output (1D DBL array) and you're not doing that, but the real answer is what's in the previous paragraph - you should use those tools to learn how to find such an answer yourself.
The string returned by Flatten to String only contains the data, not the description of what data type was passed in, so in order to unflatten it again you need to tell Unflatten from String what type it was. You do this by wiring some data of the appropriate type (any data - if it's an array it can be an empty one) to the Type terminal.
I don't think this is immediately obvious from the LabVIEW 2012 help but I think it's fairly clear if you follow the link from the Unflatten from String help page to one of the examples. The Read Flattened Data.vi example has an array wired to the Type input.
I have seen How to read/write from/to file using golang? and http://golang.org/pkg/os/#File.Write but could not get answer.
Is there a way, I can directly write an array of float/int to a file. Or do I have to change it to byte/string to write it. Thanks.
You can use the functions in the encoding/binary package for this purpose.
As far as writing an entire array at once goes, there are no functions for this. You will have to iterate the array and write each element individually. Ideally, you should prefix these elements with a single integer, denoting the length of the array.
If you want a higher level solution, you can try the encoding/gob package:
Package gob manages streams of gobs - binary values exchanged between an Encoder (transmitter) and a Decoder (receiver). A typical use is transporting arguments and results of remote procedure calls (RPCs) such as those provided by package "rpc".
I have a byte array of a file and I need to save it into my database in a field that has been set aside of type image.
However I have a problem my data access class takes a sql string and commits it to the database for example.
"EXECUTE stored proc #parm1, #parm2, #parm3"
However the problem is I cannot figure out how to transfer the byte array to string so that I can add it as an argument.
I hope this make sense.
I also understand that I can build parameters in com objects but I do not want to do this as it will disrupt my whole data access class and I am not prepared to do this at the moment.
Thanks for any help.
In SQL statements, you can use the hexadecimal notation "0x1323235..." to represent binary data but it's not really a good way to deal with it. You should be using parameters:
sqlCmd.Parameters.AddWithValue("#parameterName", byteArrayInstance)
Answering question of how to burn byte array into a string.
Convert the byte array to a string
byte[] b = new byte[100];
string s = System.Text.ASCIIEncoding.ASCII.GetString(b);