How tensorflow deals with large Variables which can not be stored in one box - tensorflow

I want to train a DNN model by training data with more than one billion feature dimensions. So the shape of the first layer weight matrix will be (1,000,000,000, 512). this weight matrix is too large to be stored in one box.
By now, is there any solution to deal with such large variables, for example partition the large weight matrix to multiple boxes.
Update:
Thanks Olivier and Keveman. let me add more detail about my problem.
The example is very sparse and all features are binary value: 0 or 1. The parameter weight looks like tf.Variable(tf.truncated_normal([1 000 000 000, 512],stddev=0.1))
The solutions kaveman gave seem reasonable, and I will update results after trying.

The answer to this question depends greatly on what operations you want to perform on the weight matrix.
The typical way to handle such a large number of features is to treat the 512 vector per feature as an embedding. If each of your example in the data set has only one of the 1 billion features, then you can use the tf.nn.embedding_lookup function to lookup the embeddings for the features present in a mini-batch of examples. If each example has more than one feature, but presumably only a handful of them, then you can use the tf.nn.embedding_lookup_sparse to lookup the embeddings.
In both these cases, your weight matrix can be distributed across many machines. That is, the params argument to both of these functions is a list of tensors. You would shard your large weight matrix and locate the shards in different machines. Please look at tf.device and the primer on distributed execution to understand how data and computation can be distributed across many machines.
If you really want to do some dense operation on the weight matrix, say, multiply the matrix with another matrix, that is still conceivable, although there are no ready-made recipes in TensorFlow to handle that. You would still shard your weight matrix across machines. But then, you have to manually construct a sequence of matrix multiplies on the distributed blocks of your weight matrix, and combine the results.

Related

Predict a nonlinear array based on 2 features with scalar values using XGBoost or equivalent

So I have been looking at XGBoost as a place to start with this, however I am not sure the best way to accomplish what I want.
My data is set up something like this
Where every value, whether it be input or output is numerical. The issue I'm facing is that I only have 3 input data points per several output data points.
I have seen that XGBoost has a multi-output regression method, however I am only really seeing it used to predict around 2 outputs per 1 input, whereas my data may have upwards of 50 output points needing to be predicted with only a handful of scalar input features.
I'd appreciate any ideas you may have.
For reference, I've been looking at mainly these two demos (they are the same idea just one is scikit and the other xgboost)
https://machinelearningmastery.com/multi-output-regression-models-with-python/
https://xgboost.readthedocs.io/en/stable/python/examples/multioutput_regression.html

A huge number of discrete features

I'm developing a regression model. But I ran into a problem when preparing the data. 17 out of 20 signs are categorical, and there are a lot of categories in each of them. Using one-hot-encoding, my data table is transformed into a 10000x6000 table. How should I prepare this type of data?
I used PCA, trying to reduce the dimension, but even 70% of the variance is in 2500 features. That's why I joined.
Unfortunately, I can't attach the dataset, as it is confidential
How do I prepare the data to achieve the best results in the learning process?
Can the data be mapped more accurately in a non-linear manner? If so, you might want to try using an autoencoder for dimensionality reduction.
One thing to note about PCA is that it computes an orthogonal projection of the data into linear space. This means that it only gives a linear mapping of the data. Autoencoders, on the other hand, can give you a non-linear mapping, and so is able to represent a greater amount of variance in the data in fewer dimensions. Just be sure to use non-linear activation functions in your autoencoder architecture.
It really depends on exactly what you are trying to do. Getting a covariance matrix (and also PCA decomp.) will give you great insight about which classes tend to come together (and this requires one-hot encoded categories), but training a model off of that might be problematic.
In general, it really depends on the model you want to use.
One option would be a random forest. They can definitely be used for regression, though they need to be trained specifically for that. SKLearn has a class just for this:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
The benifits of random forest is that it is great for tabular data (as is the case here), and can easily be trained using numerical values for class features, meaning your data vector can only be of dimension 20!
Decision tree models (such as random forest) are being shown to out-preform deep-learning in many cases, and this may be one of them.
TLDR; If you use a random forest, it can take learn even with numerical values for categories, and you can avoid creating incredibly large vectors for data.

Why the value to explained various ratio is too low in binary classification problem?

My input data $X$ has 100 samples and 1724 features. I want to classify my data into two classes. But explained various ratio value is too low like 0.05,0.04, No matter how many principal components I fix while performing PCA. I have seen in the literature that usually explained variance ratio is close to 1. I'm unable to understand my mistake. I tried to perform PCA by reducing number of features and increasing number of samples. But it doesn't make any significant effect on my result.
`pca = PCA(n_components=10).fit(X)
Xtrain = pca.transform(X)
explained_ratio=pca.explained_variance_ratio_
EX=explained_ratio
fig,ax1=plt.subplots(ncols=1,nrows=1)
ax1.plot(np.arange(len(EX)),EX,marker='o',color='blue')
ax1.set_ylabel(r"$\lambda$")
ax1.set_xlabel("l")

How to pass a list of numbers as a single feature to a neural network?

I am trying to cluster sentences by clustering the sentence embedding of them taken from fasttext model. Each sentence embedding has 300 dimensions, and I want to reduce them to 50 (say). I tried t-SNE, PCA, UMAP. I wanted to see how Auto Encoder works for my data.
Now passing those 300 numbers for each sentence as separate features to the NN would make sense or they should be passed as a single entity? If so, is there an way to pass a list as a feature to NN?
I tried passing the 300 numbers as individual features and with the output I tried clustering. Could get very few meaningful clusters rest were either noise or clusters with no similar sentences but being grouped (But with other techniques like UMAP I could get far more meaningful clusters in more number). Any leads would be helpful. Thanks in advance :)

Inference on several inputs in order to calculate the loss function

I am modeling a perceptual process in tensorflow. In the setup I am interested in, the modeled agent is playing a resource game: it has to choose 1 out of n resouces, by relying only on the label that a classifier gives to the resource. Each resource is an ordered pair of two reals. The classifier only sees the first real, but payoffs depend on the second. There is a function taking first to second.
Anyway, ideally I'd like to train the classifier in the following way:
In each run, the classifier give labels to n resources.
The agent then gets the payoff of the resource corresponding to the highest label in some predetermined ranking (say, A > B > C > D), and randomly in case of draw.
The loss is taken to be the normalized absolute difference between the payoff thus obtained and the maximum payoff in the set of resources. I.e., (Payoff_max - Payoff) / Payoff_max
For this to work, one needs to run inference n times, once for each resource, before calculating the loss. Is there a way to do this in tensorflow? If I am tackling the problem in the wrong way feel free to say so, too.
I don't have much knowledge in ML aspects of this, but from programming point of view, I can see doing it in two ways. One is by copying your model n times. All the copies can share the same variables. The output of all of these copies would go into some function that determines the the highest label. As long as this function is differentiable, variables are shared, and n is not too large, it should work. You would need to feed all n inputs together. Note that, backprop will run through each copy and update your weights n times. This is generally not a problem, but if it is, I heart about some fancy tricks one can do by using partial_run.
Another way is to use tf.while_loop. It is pretty clever - it stores activations from each run of the loop and can do backprop through them. The only tricky part should be to accumulate the inference results before feeding them to your loss. Take a look at TensorArray for this. This question can be helpful: Using TensorArrays in the context of a while_loop to accumulate values