I'm calculating an average by first getting the number of of months and then divide the number of records by that number like this:
monthly = tables[SUB_ACCT_DOC_ACC_MTHLY_SUM]
num_months = monthly.clndr_yr_month.unique().size
df = (monthly[["sub_acct_id", "clndr_yr_month"]].groupby(["sub_acct_id"]).size() / num_months).reset_index("sub_acct_id")
df.head(5)
What I get is
sub_acct_id 0
0 12716D 242.0
1 12716G 241.5
2 12716K 165.0
3 12716N 92.5
4 12716R 156.5
but how can I rename the new column to e.g. "avg"
sub_acct_id avg
0 12716D 242.0
1 12716G 241.5
2 12716K 165.0
3 12716N 92.5
4 12716R 156.5
You can access the names with the columns attribute of the dataframe:
df.columns = ['sub_acct_id','avg']
Related
I'm trying to calculate variability statistics from two df's - one with current data and one df with average data for the month. Suppose I have a df "DF1" that looks like this:
Name year month output
0 A 1991 1 10864.8
1 A 1997 2 11168.5
2 B 1994 1 6769.2
3 B 1998 2 3137.91
4 B 2002 3 4965.21
and a df called "DF2" that contains monthly averages from multiple years such as:
Name month output_average
0 A 1 11785.199
1 A 2 8973.991
2 B 1 8874.113
3 B 2 6132.176667
4 B 3 3018.768
and, i need a new DF calling it "DF3" that needs to look like this with the calculations specific to the change in the "name" column and for each "month" change:
Name year month Variability
0 A 1991 1 -0.078097875
1 A 1997 2 0.24454103
2 B 1994 1 -0.237197002
3 B 1998 2 -0.488287737
4 B 2002 3 0.644782
I have tried options like this below but with errors about duplicating the axis or key errors -
DF3['variability'] =
((DF1.output/DF2.set_index('month'['output_average'].reindex(DF1['name']).values)-1)
Thank you for your help in leaning Python row calculations coming from matlab!
For two columns, you can better use merge instead of set_index:
df3 = df1.merge(df2, on=['Name','month'], how='left')
df3['variability'] = df3['output']/df3['output_average'] - 1
Output:
Name year month output output_average variability
0 A 1991 1 10864.80 11785.199000 -0.078098
1 A 1997 2 11168.50 8973.991000 0.244541
2 B 1994 1 6769.20 8874.113000 -0.237197
3 B 1998 2 3137.91 6132.176667 -0.488288
4 B 2002 3 4965.21 3018.768000 0.644780
I`m trying to calculate the sum of one field for a specific period of time, after grouping function is applied.
My dataset look like this:
Date Company Country Sold
01.01.2020 A BE 1
02.01.2020 A BE 0
03.01.2020 A BE 1
03.01.2020 A BE 1
04.01.2020 A BE 1
05.01.2020 B DE 1
06.01.2020 B DE 0
I would like to add a new column per each row, that calculates the sum of Sold (per each group "Company, Country" for the last 7 days - not including the current day
Date Company Country Sold LastWeek_Count
01.01.2020 A BE 1 0
02.01.2020 A BE 0 1
03.01.2020 A BE 1 1
03.01.2020 A BE 1 1
04.01.2020 A BE 1 3
05.01.2020 B DE 1 0
06.01.2020 B DE 0 1
I tried the following, but it is also including the current date, and it gives differnt values for the same date, i.e 03.01.2020
df['LastWeek_Count'] = df.groupby(['Company', 'Country']).rolling(7, on ='Date')['Sold'].sum().reset_index()
Is there a buildin function in pandas that I can use to perform these calculations?
You can use a .rolling window of 8 and then subtract the sum of the Date (for each grouped row) to effectively get the previous 7 days. For this sample data, we should also pass min_periods=1 (otherwise you will get NaN values, but for your actual dataset, you will need to decide what you want to do with windows that are < 8).
Then from the .rolling window of 8, simply do another .groupby of the relevant columns but also include Date this time, and take the max value of the newly created LastWeek_Count column. You need to take the max, because you have multiple records per day, so by taking the max, you are taking the total aggregated amount per Date.
Then, create a series that takes the grouped by sum per Date. In the final step subtract the sum by date from the rolling 8-day max, which is a workaround to how you can get the sum of the previous 7 days, as there is not a parameter for an offset with .rolling:
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
df['LastWeek_Count'] = df.groupby(['Company', 'Country']).rolling(8, min_periods=1, on='Date')['Sold'].sum().reset_index()['Sold']
df['LastWeek_Count'] = df.groupby(['Company', 'Country', 'Date'])['LastWeek_Count'].transform('max')
s = df.groupby(['Company', 'Country', 'Date'])['Sold'].transform('sum')
df['LastWeek_Count'] = (df['LastWeek_Count']-s).astype(int)
Out[17]:
Date Company Country Sold LastWeek_Count
0 2020-01-01 A BE 1 0
1 2020-01-02 A BE 0 1
2 2020-01-03 A BE 1 1
3 2020-01-03 A BE 1 1
4 2020-01-04 A BE 1 3
5 2020-01-05 B DE 1 0
6 2020-01-06 B DE 0 1
One way would be to first consolidate the Sold value of each group (['Date', 'Company', 'Country']) on a single line using a temporary DF.
After that, apply your .groupby with .rolling with an interval of 8 rows.
After calculating the sum, subtract the value of each line with the value in Sold column and add that column in the original DF with .merge
#convert Date column to datetime
df['Date'] = pd.to_datetime(df['Date'], format='%d.%m.%Y')
#create a temporary DataFrame
df2 = df.groupby(['Date', 'Company', 'Country'])['Sold'].sum().reset_index()
#calc the lastweek
df2['LastWeek_Count'] = (df2.groupby(['Company', 'Country'])
.rolling(8, min_periods=1, on = 'Date')['Sold']
.sum().reset_index(drop=True)
)
#subtract the value of 'lastweek' from the current 'Sold'
df2['LastWeek_Count'] = df2['LastWeek_Count'] - df2['Sold']
#add th2 new column in the original DF
df.merge(df2.drop(columns=['Sold']), on = ['Date', 'Company', 'Country'])
#output:
Date Company Country Sold LastWeek_Count
0 2020-01-01 A BE 1 0.0
1 2020-01-02 A BE 0 1.0
2 2020-01-03 A BE 1 1.0
3 2020-01-03 A BE 1 1.0
4 2020-01-04 A BE 1 3.0
5 2020-01-05 B DE 1 0.0
6 2020-01-06 B DE 0 1.0
I have two dataframe, please tell me how I can compare them by operator name, if it matches, then add the values of quantity and time to the first data frame.
In [2]: df1 In [3]: df2
Out[2]: Out[3]:
Name count time Name count time
0 Bob 123 4:12:10 0 Rick 9 0:13:00
1 Alice 99 1:01:12 1 Jone 7 0:24:21
2 Sergei 78 0:18:01 2 Bob 10 0:15:13
85 rows x 3 columns 105 rows x 3 columns
I want to get:
In [5]: df1
Out[5]:
Name count time
0 Bob 133 4:27:23
1 Alice 99 1:01:12
2 Sergei 78 0:18:01
85 rows x 3 columns
Use set_index and add them together. Finally, update back.
df1 = df1.set_index('Name')
df1.update(df1 + df2.set_index('Name'))
df1 = df1.reset_index()
Out[759]:
Name count time
0 Bob 133.0 04:27:23
1 Alice 99.0 01:01:12
2 Sergei 78.0 00:18:01
Note: I assume time columns in both df1 and df2 are already in correct date/time format. If they are in string format, you need to convert them before running above commands as follows:
df1.time = pd.to_timedelta(df1.time)
df2.time = pd.to_timedelta(df2.time)
I want to create new columns out of the unique values of one column with the count of the unique values as values assigned in the row.
df = pd.DataFrame([["a",20],["a", 10],["b", 5],["c",10],
["b", 10],["a", 5],["c",5],["c",5]],
columns=["alp","min"])
In [4]: df
Out[4]:
alp min
0 a 20
1 a 10
2 b 5
3 c 10
4 b 10
5 a 5
6 c 5
7 c 5
I tried using groupby to get the values I want
In [8]: df.groupby('alp')['min'].count()
Out[8]:
alp
a 3
b 2
c 3
Name: min, dtype: int64
Now, I want to create columns out of that output.
count_a count_b count_c
0 3 2 3
Is there any function to achieve this in pandas?
Remove Series name by Series.rename_axis, convert to one column DataFrame by Series.to_frame, transpose by DataFrame.T and last DataFrame.add_prefix:
df = df.groupby('alp')['min'].count().rename_axis(None).to_frame(0).T.add_prefix('count_')
print (df)
count_a count_b count_c
0 3 2 3
Or create DataFrame per constructor:
s = df.groupby('alp')['min'].count()
df = pd.DataFrame([s.values], columns='count_' + s.index.values)
I would like to convert the following dataframe into a json .
df:
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
In order to do so by using the function df.to_json() I would need to have unique names in column and indices.
Therefore what I am looking for is to convert the column names into a row and have default column numbers . In short I would like the following output:
df:
0 1 2 3 4 5
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86
Turning the column names into the first row so I can make the conversion correctly .
You could also use vstack in numpy:
>>> df
x y z
0 8 7 6
1 6 5 4
>>> pd.DataFrame(np.vstack([df.columns, df]))
0 1 2
0 x y z
1 8 7 6
2 6 5 4
The columns become the actual first row in this case.
Use assign by list of range and original column names:
print (range(len(df.columns)))
range(0, 6)
#for python2 list can be omit
df.columns = [list(range(len(df.columns))), df.columns]
Or MultiIndex.from_arrays:
df.columns = pd.MultiIndex.from_arrays([range(len(df.columns)), df.columns])
Also is possible use RangeIndex:
print (pd.RangeIndex(len(df.columns)))
RangeIndex(start=0, stop=6, step=1)
df.columns = pd.MultiIndex.from_arrays([pd.RangeIndex(len(df.columns)), df.columns])
print (df)
0 1 2 3 4 5
A sector B sector C sector
TTM Ratio -- 35.99 12.70 20.63 14.75 23.06
RRM Sales -- 114.57 1.51 5.02 1.00 4594.13
MQR book 1.48 2.64 1.02 2.46 2.73 2.74
TTR cash -- 14.33 7.41 15.35 8.59 513854.86