Tensorflow with GPU and CUDA v5.5 - tensorflow

I want to use the GPU enabled version of Tensorflow. I read that it works best with CUDA 7.5 but the server that I am using has CUDA version 5.5 installed.
Can I configure Tensorflow with CUDA 5.5? If yes, how? I have installed tensorflow in a virtual environment.

From the installation doc:
In order to build or run TensorFlow with GPU support, both NVIDIA's Cuda Toolkit (>= 7.0) and cuDNN (>= v2) need to be installed.
If you don't install from source, you will need to use version 7.5.
Also make sure that you have a compatible GPU:
TensorFlow GPU support requires having a GPU card with NVidia Compute Capability >= 3.0. Supported cards include but are not limited to:
NVidia Titan
NVidia Titan X
NVidia K20
NVidia K40

Related

Tensorflow (CUDA 11.2) not detecting GPU on a AMD Radeon Vega 8 (Envy Laptop) using Python 3.7

Has anyone been able to make tensorflow detect the GPU using python 3.7?
How did you do it? I've downloaded cuDNN 8.1, CUDA 11.2, then pip installed tensorflow using pip install tensorflow-gpu==2.5 I've added another environment variable for cuDNN's bin, however I am still getting this result Num GPUs Available 0. Does Tensorflow (CUDA 11.2) even work with the AMD Radeon Vega 8?
No it does not, because cuDNN is a product of NVIDIA and so is CUDA. NVIDIA designs their own GPUs and their product will look for those GPUs. In order for tensorflow to detect the GPU you will have to use one of NVIDIA's GPU.

How to use tensorflow 2.3 with GPU in windows 10

I created a virtual environment and installed TensorFlow 2.3 without anaconda, like this:
And I installed NVIDIA driver, CUDA, cudnn
But GPU still doesn't work in tf....
I do not know what mistake I have done.
change CUDA 11.0 to CUDA 10.1
and cudnn to 7.6

How to run tensorflow-gpu on Nvidia Quadro GV100?

I am currently working as a working student and now I have trouble installing Tensorflow-gpu on a machine using a Nvidia Quadro GV100 GPU.
On the Tensorflow homepage I found out that I need to install CUDA 9.0 and Cudnn 7.x in order to run Tensorflow-gpu 1.9. The problem is that I can't find a suitable CUDA version supporting the GV100. Could it be that there is no CUDA version yet? Is it possible that one can't use the GV100 for tensoflow-gpu?
Sorry for the stupid question, I am new to installing DL frameworks :-)
Thank you very much for your help!
On the Tensorflow homepage I found out that I need to install CUDA 9.0 and Cudnn 7.x in order to run Tensorflow-gpu 1.9.
That is if you want to install a pre-built Tensorflow binary distribution. In that case you need to use the version of CUDA which the Tensorflow binaries were built against, which in this case in CUDA 9.0
The problem is that I can't find a suitable CUDA version supporting the GV100
The CUDA 9.0 and later toolkits fully support Volta cards and that should include the Quadro GV100. The driver which ships with CUDA 9.0 is a 384 series which won't support your GPU. If you are referring to a driver support issue, then the solution would be to install the recommended driver for your GPU, and only install the CUDA toolkit from the CUDA 9.0 bundle, not the toolkit and driver, which is the default.
Otherwise you can use CUDA 9.1 or 9.2, which should have support for your GPU with their supplied drivers, but you will then need to build Tensorflow yourself from source.

Tensorflow 1.3 and CUDA 8.1

I am running Tensorflow 1.3 with CUDA 8.0 atop of Ubuntu 16.04 successfully. The setup has been done according the official installation instructions.
1) I am wondering if Tensorflow is compatible with CUDA 9 as well. Is this supported? If so, is there a significant performance gain?
2) If only CUDA 8 is supported: is cuDNN 7.0.3 supported?
Version compatibility Tensorflow can be viewed at this link

Cannot use GPU with Tensorflow

I've tensorflow installed with CUDA 7.5 and cuDNN 5.0. My graphics card is NVIDIA Geforce 820M with capability 2.1. However, I get this error.
Ignoring visible gpu device (device: 0, name: GeForce 820M, pci bus id: 0000:08:00.0) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.
Device mapping: no known devices.
Is there any way to run GPU on a 2.1 capability?
I scoured online to find that it is cuDNN that requires this capability, so will installing an earlier version of cuDNN enable me to use GPU?
tensorflow-gpu requires GPUs of compute capability 3.0 or higher for GPU acceleration and this has been true since the very first release of tensorflow.
cuDNN has also required GPUs of compute capability 3.0 or higher since the very first release of cuDNN.
With tensorflow (using Keras), you might be able to get it to run with PlaidML PlaidML. I have been able to run tensorflow with GPU on AMD and NVidia GPUs (some are old) with PlaidML. It's not as fast as CUDA, but much faster than your CPU.
For reference, I have run it on an old Macbook Pro (2012) with an NVidia 650 GPU (1.5 GB) as well as an AMD HD Radeon 750 3GB.
The caveat is that it needs to be Keras vs lower level TF. There are lots of articles on it, and now it has support from Intel.