alias analysis vs. pointer analysis vs. points-to analysis - code-analysis

Currently I am reading a lot about static code analysis. There are several terms that confuses me because I can't really tell what the difference is.
alias analysis
pointer analysis
points-to analysis
What is the difference (if any) between them?

Pointer analysis or points-to analysis is a static program analysis that
determines information on the values of pointer variables or expressions.
Although the literature is not entirely consistent on terminology, pointer analysis
is a near-synonym of alias analysis.
Whereas, however, pointer/points-to analysis typically tries to model heap objects and asks “what objects
can a variable point to?”, alias analysis algorithms focus on the question of “can a pair of variables/expressions point to the same object (aliases) ?”

Related

Call-by-need and call-by-name reduction relation semantics

While trying to summarize my knowledge about lambda calculus, I understood that I'm quite familiar with call-by-value but I've never seen сall-by-need reduction semantics. I know the definition, but it would be great to see precise meaning.
This is what I have for call-by-need and call-by-value (not very detailed description):
Call-by-value
Small Step
Values
β-reduction
Evaluation context
Big Step (with closures and environment)
Closures
Environment
Reduction
Call-by-name
Small Step
β-reduction
Evaluation context
I guess there is also a big step, which must be quite similar to call-by-value, but once again, its better to see it once.
So I will be grateful if someone can extend my list with call-by-need.
Currently I cannot write this in Tex, but the main thing is: when using pure functions the evaluated value of a function with the same parameter(s) will be always the same, so while you are in the same body, you can use the evaluated reference instead of evaluating it again.
For more information see:
http://repository.readscheme.org/ftp/papers/plsemantics/felleisen/jfp96-af.pdf

Should I use OOP when encapsulation is essentially ignored?

I am making a Mathematics web program which allows the user to compute and prove various quantities or statements, e.g. determinant of a matrix, intersection of sets, determine whether a given map is a homomorphism. I decided to write the code using the OOP paradigm (in PHP, to handle some of the super heavy computations that a user's browser might not appreciate), since I could easily declare sets as Set objects, matrices as Matrix objects, etc. and keep some of the messy details of determining things such as cardinality, determinants, etc. in the background. However, after getting knee-deep in code, I'm wondering if deciding on OOP was a mistake. Here's why.
I'll use my Matrix class as a simple example. Matrix has the following attributes:
name (type String) (stores name of this matrix)
size (type array) (stores # rows and # columns of this matrix)
entries (type array) (stores this matrix's entries)
is_invertible (type Boolean) (stores whether this matrix can be inverted)
determinant (type Int) (stores the determinant of this matrix)
transpose (type array) (stores the transpose of this matrix)
Creating a new matrix called A would be done like so:
$A = new Matrix("A");
Now, in a general math problem concerning matrices, it could be that we know the matrix's name, size, entries, whether it's invertible, its determinant, or its transpose, or any combination of the above. This means that all of these properties need to be accessible, and certainly any of these properties can be changed by the user, depending on what's given in the problem. (I can give examples of problems for any of these cases, if needed.)
The issue I'm having, then, is that this would break the encapsulation "rule" of OOP ("rule" in quotes since, from what I understand, it's not a hard-and-fast rule, just one that should be upheld to the greatest extent possible). I did some searching on when getters and setters should be used, or even IF they should be used (seems odd to me that they wouldn't, in an OOP setting...), but this did not seem to help me much, as I found many contradictory answers and case-specific opinions.
So, my overall questions are: when the user needs access to modify many (if not all) of an object's attributes, but a class-oriented design seems to be ideal for addressing the programming problem,
Is OOP the best way to structure the code, despite essentially ignoring encapsulation altogether?
Is there an alternative to OOP which allows high user access while maintaining the OO "flavor" (i.e. keeping sets, matrices, etc. as objects)
Is it ok to break the encapsulation rule altogether once in a while, if the problem calls for it? Or is that not in the spirit of OOP?
What you are trying to do is not necessarily outside the scope of OOP. The thing is that you have a different model than what would usually be described in programming textbooks (where, for example, the values of the matrix would be always present and all of the functions could be simple methods). (Perhaps this is why the question was unfairly downvoted.) Nothing prevents you from storing values like "is_invertible" internally and implementing setter and getter methods. Doing this might make sense if you are trying to learn OOP. But I think other problems (see coding textbooks) might be easier for learning purposes. I see that a remote goal would be to capture some of mathematics as an OOP framework. But the whole mathematical universe is immensely richer than any fixed architecture (results like Gödel's theorem put a theoretical limit). You can only succeed in developing a framework for a very narrow application, for example solving certain equations. That's what symbolic algebra programs do: you can look at how, for example, SymPy or perhaps parts of Maple and Mathematica are implemented. In my view, the OOP paradigm can be both very useful and too restrictive / unnecessary depending on the task (you can certainly find more about shorcomings of OOP in Wikipedia or elsewhere). Also, your problem can be seen as writing a small programming language - in many of them you have sets, numbers, etc as objects.
You can use only rudimentary OOP or no OOP at all. You can use functional programming.
You should Google/read more about this on this or other sites. Is it OK to sometimes walk across the road when the red traffic light is on?

Is there a difference memory-wise between using Common Blocks and Modules in Fortran 90

I am recently learning Fortran without any guidance, and experimenting with different versions. I have found from this site:
Is a MODULE better than a COMMON block?
Almost always yes. The only reasons to use COMMON blocks are if you
expect to use your program on a computer with only a FORTRAN 77
compiler (they still exist), or if it is very important that you
control the order in which your data is stored in memory.
Well, using modules is surely syntactically sweeter than using common blocks. But what are the differences in terms memory usage and allocation in both cases? Also does it make a difference in terms performance and access speed? Does that question make sense?
M.S.B. has it in his answer, but does not stress it enough in my opinion. The variables in COMMON blocks are laid out in memory exactly in the order in the definition of the block. From this the restriction, that no dynamic memory objects (allocatable, pointer) can be in a COMMON block, immediately follows.
The "sequence association" means you can count on the placement of the variables in such a way that you can, e.g., use two following arrays as a large one.
COMMON blocks have probably no place in modern code, although they are not declared obsolete.
When it comes to speed, if the variable is the same, there shouldn't be any difference in accessing it, whether it is in a module or in a COMMON block.
One difference memory-wise is that you can use allocatable arrays in modules, but not in common. (See Fortran common variables, allocatable array). Much more convenient if you have an array that you don't know the size of the array at compile time. The old FORTRAN way was to declare the array at some huge size that was hopefully large enough, but which typically wasted space. With the allocatable array you can allocate the array at the precise size needed.
I never use COMMON in new code. It is more limited and brings in the unnecessary "sequence association", i.e., associating variables by their layout in memory.

Is static typing a subset of dynamic typing?

I was going to add this as a comment to my previous question about type theory, but I felt it probably deserved its own exposition:
If you have a dynamic typing system and you add a "type" member to each object and verify that this "type" is a specific value before executing a function on the object, how is this different than static typing? (Other than the fact that it is run-time instead of compile-time).
Technically, it actually is the other way round: a "dynamically typed" language is a special case of a statically typed language, namely one with only a single type (in the mathematical sense). That at least is the view point of many in the type systems community.
Edit regarding static vs dynamic checking: only local properties can be checked dynamically, whereas properties that require some kind of global knowledge cannot. Think of properties such as something being unique, something not being aliased, a computation being free of race conditions. A suitable static type system can verify such properties, because it has the ability to establish certain invariants on the context of the expression that is being checked.
static typing happens at compile-time, not at run-time! And that difference is essential!!
See B.Pierce's book Types and Programming Languages for more.

OOP vs procedural in run-time

I have very simple question I cant find answer anywhere on the internet.
So, my question is, in procedural programming, code is in code section, which goes into Read Only memory area. Variables are either on stack or heap.
But OOP says that object are created in memory. So, does it mean even functions are written into R/W memory area?
And, does Os have to have some inbuilt OOP programs support? For example if OS doesent allowed to read instruction outside Read only code section. Thanks.
Generally, both OOP and procedural programming are abstractions which exist only at the source-code level. Once a program is compiled into executable machine-code, these abstractions cease to exist. So whether or not a particular language is OOP or procedural has no bearing on what regions of memory it uses, or where instructions are placed during execution.
The OS itself usually doesn't know or care whether a particular executable was written in an OOP or procedural language. It only cares that the executable uses binary op-codes compatible with its native instruction set, and that the executable has an ABI (binary interface) that it understands.
This is a good question.
Whereas as object constitutes functions and data as being placed in the same spot theoretically, most implementations split it. The way you do it, is that code is split out and stored into the RO segment. An object in the RW area then have a way to refer back to that code in the RO area. The coupling of code and data is only used conceptually by the human programmer and the type checker to ensure that you do not violate the rules and principles.
A Java/C#-like language will usually be made such that each object has a tag identifying the type of the object. The object itself is simply a struct containing all the fields laid out in a prespecified order. This tag can then be used to look up which function in the RO-area to call. The function in the RO-area is altered to take an extra parameter, called this or self through which the contents of said object can be reached. When the method needs to refer to fields, it knows the pre-specified order, so it can do that correclty. Note that there are some tricks needed to solve inheritance, but this is the crux of the idea.
A Python/Ruby-like language will usually make an object be a hash-table where a method is a pointer to the code in the RO-area (provided that the language is compiled and not run through a bytecode interpreter). Function calls are made by looking up the hash-table contents and following the code pointer. Fields are also looked up in the same hash table.
With those basics down, most implementations make tricks to avoid the part where a pointer is followed to find the function to call. They try to figure out and narrow down the possible call to a single function. Then they can replace the lookup with a direct call to the right function, a much faster solution.
the tl;dr version: The language semantics views fields and methods as part of an object. The implementation split them into RO and RW segments. As such no OS support is needed.
OOP doesn't say this. I have no idea where you read it, if you add a quote that would help.
Objects are variables, so what you know about variables is correct for objects. In languages like C# (.net framework actually) objects can only be stored in heap, because they are so called reference types. In C++ they can live anywhere.
But OOP says that object are created in memory. So, does it mean even functions are written into R/W memory area?
From this i concluded that you think that functions are objects. That is true in far not every OOP language. It is from functional languages where functions are first class objects. Functions are in majority of cases immutable and are placed in read only sections.
Common OSes like Windows, Linux and MacOsx are unaware of objects. This is purely program concept. .net framework and java vm provide layer of abstraction. They are execution environments that have build in object support.