Weird syntax error - idris

data A = B | C Int
implementation Semigroup A where
B <+> x = x
x <+> B = x
C m <+> C n = C (m + n)
gives me a syntax error of
./Nodes/Test.idr:3:1: error: expected: ";",
"|", declaration, end of input
implementation Semigroup A where
^
Type checking ./Nodes/Test.idr
in Idris 0.11.2. Removing implementation gives instead this message:
./Nodes/Test.idr:3:13: error: expected: "#",
"with", argument expression,
constraint argument,
function right hand side,
implicit function argument,
with pattern
Semigroup A where
^
Type checking ./Nodes/Test.idr
Should I get an error message? I can't see anything wrong with the syntax.
Thanks.

You cannot use infix operators in implementations (for now, I guess). Instead, wrap them to prefixes:
data A = B | C Int
implementation Semigroup A where
(<+>) B x = x
(<+>) x B = x
(<+>) (C m) (C n) = C (m + n)

Related

Compile-time invariant/property checking in Elm

I have some value constraints/properties that I want to check at compile-time. In this example, I want to track whether a vector is normalized or not. I think I have a solution, using type tags, but I need someone with some Elm/FP experience to tell me if I have missed something obvious. Thank you.
module TagExperiment exposing (..)
type Vec t = Vec Float Float Float
type Unit = Unit
type General = General
toGeneral : Vec t -> Vec General
toGeneral (Vec x y z) =
Vec x y z
scaleBy : Vec t -> Vec t -> Vec t
scaleBy (Vec bx by bz) (Vec ax ay az) =
{- Operate on two General's or two Unit's. If you have one of each,
then the Unit needs to be cast to a General.
-}
let
mag =
sqrt ((bx * bx) + (by * by) + (bz * bz))
in
Vec (ax * mag) (ay * mag) (az * mag)
-- These cases work as desired.
a : Vec Unit
a = Vec 0 0 1
b : Vec General
b = Vec 2 2 2
d : Vec Unit
d = scaleBy a a
e : Vec General
e = scaleBy b b
g : Vec General
g = scaleBy (toGeneral a) b
h : Vec General
h = scaleBy b (toGeneral a)
-- Here is where I have trouble.
c : Vec t -- unknown... uh-oh
c = Vec 3 3 3
f : Vec t -- still unknown... sure
f = scaleBy c c
i : Vec Unit -- wrong !!!
i = scaleBy a c
j : Vec Unit -- wrong !!!
j = scaleBy c a
k : Vec General -- lucky
k = scaleBy b c
l : Vec General -- lucky
l = scaleBy c b
{- The trouble is that I am not required to specify a tag for c. I guess the
solution is to write "constructors" and make the built-in Vec constructor
opaque?
-}
newUnitVec : Float -> Float -> Float -> (Vec Unit)
newUnitVec x y z =
-- add normalization
Vec x y z
newVec : Float -> Float -> Float -> (Vec General)
newVec x y z =
Vec x y z
Yes, without Dependant Types the most ergonomic way to ensure constraints on values at compile time is to use opaque types along with a "Parse" approach.
Perhaps something like:
module Vec exposing (UnitVector, Vector, vectorToUnit)
type UnitVector
= UnitVector Float Float Float
type Vector
= Vector Float Float Float
vectorToUnit : Vector -> Maybe UnitVector
vectorToUnit (Vector x y z) =
case ( x, y, z ) of
( 0, 0, 0 ) ->
Nothing
_ ->
normalize x y z
Then, with the only ways to get a UnitVector both defined inside this module and known to obey the constraints, then any time you see a UnitVector at compile-time it is correct to assume the constraints are met.
For vectors in particular, it may be worth having a look at ianmackenzie/elm-geometry for comparison?

Multivariate function composition

Let's consider the following:
f: Int -> Int -> Int -> Int
f a b c = a + b + c
g: Int -> Int
g x = x * 2
now, I'd like to create a composed function like
f(g(a), g(b), g(c))
how to use << and >> operators to achieve that? Is it even possible to compose multivariadic functions?
how to use << and >> operators to achieve that? Is it even possible to compose multivariadic functions?
Yes, easily:
h = flip flip g << ((<<) (<<)) << ((>>) g) << f << g
h is a <function> : number -> number -> number -> number, which is the same as h a b c = f (g a) (g b) (g c).
I think we don't need to dig deep in the correctness, since it's obvious that the version with arguments is much more readable.
Multivariadic does not really exist in Elm. Best I can suggest is
f : Int -> Int -> Int -> Int
f a b c =
[ a, b, c ] |> List.map ((<|) g) |> List.sum
g : Int -> Int
g x =
x * 2
Note that you had an error in the type signature for g

Hofstadter Female and Male sequences in SML

This is my first SML program. I am trying to write a function that returns the first number to the nth number of Hofstadter's Female or Male sequence in list form. What I have so far is:
val m = fn (n) => if n = 0 then 1 :: [] else m f (n - 1);
val f = fn (n) => if n = 0 then 0 :: [] else f m (n - 1);
You can learn about the sequence here:
https://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Female_and_Male_sequences
The error that I am getting is:
[opening sequence.sml]
sequence.sml:1.49 Error: unbound variable or constructor: f
sequence.sml:1.47-1.58 Error: operator is not a function [tycon mismatch]
operator: int list
in expression:
(m <errorvar>) (n - 1)
val it = () : unit
How can I correct this?
I ended up taking this approach:
fun
m (n) = if n = 0 then 0 else n - (f (m (n - 1)))
and
f (n) = if n = 0 then 1 else n - (m (f (n - 1)));
val seq = fn n => List.tabulate((n), f);
It is quite slow. If anybody has a faster version, then I'd love to see it.
Although you have already fixed them, there were two problems with your original approach:
Function application is left-associative in SML so m f (n - 1) was being interpreted as (m f) (n - 1), not the desired m (f (n - 1)). You can fix this by explicitly specifying the bracketing m (f (n - 1)).
To be able to call f from m and m from f, you need to use the keyword fun instead of val on the first declaration (to make the function recursive), and the keyword and instead of fun or val on the second declaration (to make the function mutually recursive with the first function). This would look like
fun f n = ... (* I can call f or m from here! *)
and m n = ... (* I can call f or m from here! *)
To make it faster, you can memoize! The trick is to make f and m take as arguments memoized versions of themselves.
(* Convenience function: Update arr[i] to x, and return x. *)
fun updateAndReturn arr i x = (Array.update (arr, i, SOME x); x)
(*
* Look up result of f i in table; if it's not found, calculate f i and
* store in the table. The token is used so that deeper recursive calls
* to f can also try to store in the table.
*)
fun memo table f token i =
case Array.sub (table, i)
of NONE => updateAndReturn table i (f token i)
| SOME x => x
(*
* Given f, g, and n : int, returns a tuple (f', g') where f' and g' are memoized
* versions of f and g, respectively. f' and g' are defined only on the domain
* [0, n).
*)
fun memoizeMutual (f, g) n =
let
val fTable = Array.array (n, NONE)
val gTable = Array.array (n, NONE)
fun fMemo i = memo fTable f (fMemo, gMemo) i
and gMemo i = memo gTable g (gMemo, fMemo) i
in
(fMemo, gMemo)
end
fun female _ 0 = 1
| female (f, m) n = n - m (f (n - 1))
fun male _ 0 = 0
| male (m, f) n = n - f (m (n - 1))
fun hofstadter upTo =
let
val (male', female') = memoizeMutual (male, female) upTo
in
(List.tabulate (upTo, male'), List.tabulate (upTo, female'))
end
I renamed f and m to female and male. The memoized fMemo and gMemo are threaded through female and male by memoizeMutual. Interestingly, if we call male', then results for both male' and female' are memoized.
To confirm it's indeed faster, try evaluating hofstadter 10000. It's much faster than the forever that your version would take.
As a final note, the only recursive functions are fMemo and gMemo. Every other function I wrote could be written as an anonymous function (val memoizeMutual = fn ..., val female = fn ..., etc.), but I chose not to do so because the syntax for writing recursive functions is much more compact in SML.
To generalize this, you could replace the array version of memoizing with something like a hash table. Then we wouldn't have to specify the size of the memoization up front.

Problems with equational proofs and interface resolution in Idris

I'm trying to model Agda style equational reasoning proofs for Setoids (types with an equivalence relation). My setup is as follows:
infix 1 :=:
interface Equality a where
(:=:) : a -> a -> Type
interface Equality a => VerifiedEquality a where
eqRefl : {x : a} -> x :=: x
eqSym : {x, y : a} -> x :=: y -> y :=: x
eqTran : {x, y, z : a} -> x :=: y -> y :=: z -> x :=: z
Using such interfaces I could model some equational reasoning combinators like
Syntax.PreorderReasoning from Idris library.
syntax [expr] "QED" = qed expr
syntax [from] "={" [prf] "}=" [to] = step from prf to
namespace EqReasoning
using (a : Type, x : a, y : a, z : a)
qed : VerifiedEquality a => (x : a) -> x :=: x
qed x = eqRefl {x = x}
step : VerifiedEquality a => (x : a) -> x :=: y -> (y :=: z) -> x :=: z
step x prf prf1 = eqTran {x = x} prf prf1
The main difference from Idris library is just the replacement of propositional equality and their related functions to use the ones from VerifiedEquality interface.
So far, so good. But when I try to use such combinators, I run in problems that, I believe, are related to interface resolution. Since the code is part of a matrix library that I'm working on, I posted the relevant part of it in the following gist.
The error occurs in the following proof
zeroMatAddRight : ( VerifiedSemiring s
, VerifiedEquality s ) =>
{r, c : Shape} ->
(m : M s r c) ->
(m :+: (zeroMat r c)) :=: m
zeroMatAddRight {r = r}{c = c} m
= m :+: (zeroMat r c)
={ addMatComm {r = r}{c = c} m (zeroMat r c) }=
(zeroMat r c) :+: m
={ zeroMatAddLeft {r = r}{c = c} m }=
m
QED
that returns the following error message:
When checking right hand side of zeroMatAddRight with expected type
m :+: (zeroMat r c) :=: m
Can't find implementation for Semiring a
Possible cause:
./Data/Matrix/Operations/Addition.idr:112:11-118:1:When checking an application of function Algebra.Equality.EqReasoning.step:
Type mismatch between
m :=: m (Type of qed m)
and
y :=: z (Expected type)
At least to me, it appears that this error is related with interface resolution that isn't interacting well with syntax extensions.
My experience is that such strange errors can be solved by passing implicit parameters explicitly. The problem is that such solution will kill the "readability" of equational reasoning combinator proofs.
Is there a way to solve this? The relevant part for reproducing this error is available in previously linked gist.

How can I express the term ( a < b ? 0 : 1 ) using only bitwise or arithmetic operators?

Assuming the variables a and b are 32 bit integers is there a way to compare the two and return 0 if a < b and 1 if a >= b without using a ternary nor a comparison operator?
You can do this, but it's not pretty.
The problem is, as mentioned, overflow. But you can work around it, like this:
return ((x - y) ^ ((x ^ y) & ((x - y) ^ x))) >>> 31;
For the signed version, or
return ((~x & y) | ((~x | y) & (x - y))) >>> 31;
For the unsigned version.
The >>> there is an unsigned right shift, as in Java.
Use them with x = b, y = a to make them match your function.
You can find those (and others) in Hacker's Delight, under the name "comparison predicates".
First we take the difference of the two numbers. Then we are checking the sign using the fact that numbers are rappresented as complement of two.
int Compare(int a, int b)
{
int c = a - b;
int k = (c >> 31) & 1 ^ 1;
return k;
}