Sim800 supports SSL protocol. AT command "AT+CIPSSL" sets TCP to use SSL function.
In the "sim800_series_ssl_application_note_v1.01.pdf" is noted that: "Module will automatic begin SSL certificate after TCP connected."
My Problem: What is the exact meaning of the begin SSL certificate? what does sim800 do exactly? Does sim800 get SSL certificate from website? where does sim800 save SSL certificate?
As far as I know, SIM800 has some certificates in it and when you use a TCP+SSL or HTTP+SSL connection it will automatically use those certificates.
If those certificates are not ok for you, you will need to use an SD card, save there the certificates you want and use the command AT+SSLSETCERT to set the certificate you saved on your SD card. Here you can find how to use the File System.
Usually the certificates that come with the module are enough and you won't need this. But for example they didn't work for me when I tried to communicate with Azure via MQTT. I had to encrypt the data myself using wolfSSL library and send it using TCP without SSL.
Note: Not all SIM800 modules have SD card support.
There are a very few information about sim800 and ssl certificate on the web, and like you i got a lot of questions about it.
About your questions on how does sim800 get certificate and where does it save it, it seems, according to sim800_series_ssl_application_note_v1.01.pdf, that you can create (defining your own path), write and import a ssl certificate on your own with the AT+FSCREATE, AT+FSWRITE and AT+SSLSETCERT commands. An example is provided at the paragraph 3.10.
I'm sorry, i can't answer your other questions.
Anyway, if you get further informations about sim800 and ssl, i would be grateful if you share it with me.
When you use AT+CIPSSL you tell the SIM-module to use the SSL connection with TCP. When you use +CIPSTART command->
SIM module requests the TCP connection with the server through SSL.
Server sends the Server SSL certificate.
The authenticity of that certificate is checked with internal certificate authority certificate (The one that resides inside SIM-module) which is cryptographically connected with server certificate.
If the authenticity of certificate can not be confirmed SIM-module will close the connection unless you use the command AT+SSLOPT=0,0 (which forces the SIM-module to ignore invalid certificate authentication) prior to AT+CIPSSL command.
//Key exchange
SIM-module then encrypts it's master key (already inside SIM-module cannot be changed or read) with the public key (Which is part of the already sent server certificate) and sends it back to server.
Server then encrypts it's master key with SIM-module's master-key and sends it back to SIM-module. Key exchange is now complete as both (server and SIM-module) recieved master keys.
SIM-module currently doesn't support Client authentication which means that server cannot authenticate the client. That means there must be some other option of authentication (For example in MQTT that can be username and password that only client knows)
If you want your module to be able to authenticate server you will need to create the self-signed certificate for server and certificate authority certificate (for SIM-module) which is cryptographically connected to self-signed certificate and upload them to server and SIM-module (through AT+SSLSETCERT command from SD card).
If you only want to encrypt the data traffic you can ignore invalid certificate (AT+SSLOPT=0,0) as you will recieve publickey nevertheless. But if you want to be sure about server authenticity you will need to upload right certificate to module.
Related
Problem Background:
As part of the Computer Networking course assignment, I have been given task of implementing a Proxy Server ( using python socket and ssl module ) that handles https communications between the browser and the origin server (The real server that my browser wants to talk to).
What I have done so far:
I have implemented the above requirement using ssl sockets and also generated self-signed 'cert.pem' 'key.pem' files.
What I need to do:
Now I just need to tell my browser (chrome 89 on kubuntu 20.04) to accept this self-signed certificate and then test the working of my proxy server.
Reading from this stackoverflow question, I can see that I have to:
(1) become my own CA (2) then sign my SSL certificate as a CA. (3) Then import the CA certificate (not the SSL certificate, which goes onto my server) into Chrome.
My confusion/question:
So if I do this, when eventually I am done with this assignment, how do I reverse all these steps to get my browser in the previous state before I had made all these changes. Also, how to reverse the "become your own CA" and also delete the SSL certificates signed by my CA.
Basically, I want my system to return to the previous state it was before I would have made all these changes.
UPDATE:
I have done the previously outlined steps but now I get an error.
Here is a snippet of my code:
serv_socket = socket(AF_INET, SOCK_STREAM)
serv_socket.bind(('', serv_port))
serv_socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
context = context.load_cert_chain('cert.pem', 'key.pem')
context.set_ciphers('EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH')
serv_socket.listen(10)
socket_to_browser, addr = serv_socket.accept()
conn_socket_to_browser = context.wrap_socket(socket_to_browser, server_side=True)
At the last line conn_socket_to_browser = context.wrap_socket(socket_to_browser, server_side=True) an exception is thrown: [SSL: HTTPS_PROXY_REQUEST] https proxy request (_ssl.c:1123)
What am I doing wrong ?
As glamorous as "becoming your own CA" sounds, with openssl it basically comes down to creating a self-signed certificate, and then creating a directory where some CA-specific configuration will be stored (I don't fully remember the specifics, but I think it was just some files related to CNs and serial numbers) so basically reversing the "become your own CA" step is something as mundane as deleting this directory along with the private key and self-signed certificate you were using for the CA. That's it, the CA is no more.
And for chrome returning to the previous state, you would just go the the CA list where you added the CA certificate, select it and delete it. Chrome will stop accepting certificates signed by your CA.
Regarding your new problem... In my opinion, you have developed some kind of reverse proxy (meaning that you expect normal HTTPS requests that you then redirect to the real server) but you have configured Chrome to use it as a forward proxy. In this case, Chrome does not send it a normal HTTPS request, it sends a special non-encrypted CONNECT command and only after receiving the non-encrypted response, it negotiates the TLS connection. That's why openssl says "https proxy request" because it has detected a "https proxy request" (a CONNECT command) instead of the normal TLS negotiation.
You can take a look at How can a Python proxy server (using SSL socket) pretend to be an HTTPS server and specify my own keys to get decrypted data?
It's python, but I think that you'll get the idea
When I connect my embedded board's WSS client to wss://echo.websocket.org, i can use the cert i find using firefox's security tab, the "Let's Encrypt Authority X3" cert. I am able to authenticate on my board and echo information.
but if i use my server's https://*.ngrok.io/ in my WSS client, with the cert i find on the ngrok.io website, my board tells me that it fails to verify peer certificate.
But I have no problem connecting websocket.org's echo client to my https://*.ngrok.io/ server. what's going on?
Turns out I have to use openssl to extract the cert.
1) I am trying to setup an FTPS server on my EC2 Ubuntu instance. I can only find resources to setup tutorials for an SFTP server.
2)From what I understand, the SSL certificate is only applicable to the server. When a user tries to FTPS to my server, should he/she upload a certificate or public/private key file similar to SFTP? Or only hostname, port, username, password is sufficient?
You might have better luck searching for "ftp over tls" which is another name for ftps. TLS is the successor protocol to SSL, though often still referred to casually as "SSL."
I use proftpd and I mention that primarily because their docs discuss some theory and troubleshooting techniques using openssl s_client -connect which you will find quite handy regardless of which server you deploy.
The SSL cert is only required at the server side, and if you happen to have a web server "wildcard" cert, you may be able to reuse that, and avoid purchasing a new one.
Client certs are optional; username and password will suffice in many applications. Properly configured, authentication will only happen over encrypted connections. (Don't configure the server to also operate in cleartext mode on the standard ftp port; inevitably you'll find a client who thinks they are using TLS when they are not).
If client certs are required, it is because of your policy, rather than technical reasons. You'll find that SSL client certs operate differently than SSH. Typically the client certs are signed you a certificate authority that you create, and then you trust them because they are signed by your certificate authority as opposed to your possession of their public key, as in SSH.
I am testing a web service with an external partner using 2 way SSL under IIS 7.5. I am requiring SSL, requiring a client cert, and using one to one mapping to authenticate to a domain account. I have configured everything and it works fine on our network (I am able to provide a client cert, get authenticated and invoke the service from browser and test harness).
From outside of our network (in most cases, see below), I am getting a 403.7 error. I have gone through the machine level certificate store and made sure the certificates and CAs are trusted.
Here's the weird thing. I obtained a Type I cert to test from home (and got 403.7 like our intended partner is). So I setup Fiddler to debug SSL and send my certificate, and this works for some reason. I setup a test harness to pass the exact same certificate, and got 403.7. I test in my browser (IE 9), don't get a prompt for a client cert, and get 403.7.
Any help appreciated.
Bill
Last time I checked, IIS was using re-negotiation (by default) to get the client certificate: there is a first handshake where the server doesn't request a client certificate, followed by another handshake (encrypted this time) where the server requests the certificate (via a TLS CertificateRequest message). This will prevent you from seeing anything from Wireshark, unless you configure it to use the server's private key and decipher the traffic (note that this only works with some cipher suites).
One way to see the client-certificate negotiation is to configure IIS to use initial client certificate negotiation, using netsh and clientcertnegotiation=true (which is about initial negotiation). At least the CertificateRequest and the certificate will be sent in clear during the handshake, so you should be able to see this with Wireshark.
If the client isn't sending a certificate to the server as a response to the CertificateRequest, you'll still see an empty Certificate message from the client.
If you don't export the private key with the certificate to use with Fiddler or whichever other client, there is no chance that it will be able to use the certificate. It may at best try to send the certificate, but the handshake will fail (since the CertificateVerify message needs to be signed by the client's private key).
I guess you may encounter a problem whereby:
not presenting a certificate is accepted by the server (it's effectively optional),
presenting an invalid certificate makes it fail and causes this 403.7 status code (many servers and SSL/TLS stacks would implement this as a fatal error, but TLS specification doesn't say that unsupported_certificate, certificate_revoked, certificate_expired, certificate_unknown should be fatal, so this is at the server's discretion).
Are you using the same physical machine to test both the in-network and external-network connections? If not, are you sure that the external-network client has the private key accessible?
I have not configured Fiddler client authentication before. Does it read the client certificate and key from the standard certificate stores? Does it read directly from a PKCS12?
One other thing that may be helpful is inspecting the TLS handshake in WireShark. Specifically, check out the Server's "Certificate Request" message, as the data here clues the client (IE9) which client certificates it should display in the prompt. Compare this for the internal and external connections.
I have a unique situation where I need to implement client certificate authentication over HTTPS between IE browser and IIS 6. The browser and IIS are separated by a firewall that only allows the browser to connect to IIS on the SSL port.
We have an internal certificate server on the same network as IIS. I've generated an SSL server cert for IIS and that is installed. I configured IIS to only allow SSL, require client certificates.
The limitation here is the browser machine is on a disconnected network, so I can't go to the CA's http://caserver/CertSrv URL and request a client cert like you normally would.
I figured if there were a way that I could generate a CSR against the Root CA's public key, I can copy it to the CA server to generate the client cert. But, there appears to be no provision in IE or the Certificates MMC to do this. The Certificates MMC seems to require a direct connection to the CA.
Has anyone solved this before?
FYI, All servers referenced run Windows Server 2003.
Update: Thanks to Jonas Oberschweiber and Mark Sutton for pointing out the CertReq.exe command line tool. Using this, I've generated a CSR, and consequently a client certificate that installs successfully. However, IE is apparently not sending this client cert when accessing the IIS server in question; it still generates a 403.7 "Forbidden: SSL client certificate is required." I suspect that the reason is that the Subject field of the client cert does not match the user id of the account running IE, thus perhaps not sending a mismatching client cert. The Subject matches that of the user I used to submit the CSR and generate the client cert on the other end of the firewall.
Does the Subject field matter? Is there something else I need to do to enable IE to send this cert?
Use the certreq command on your client as follows
certreq -new -f filein c:\certrequest.req
Here is and example of the filein
[Version]
Signature="$Windows NT$"
[NewRequest]
Subject="CN=dc1.extranet.frbrikam.com"
EncipherOnly = False
Exportable = False
KeyLength = 1024
KeySpec = 1
KeyUsage = 0xA0
MachineKeySet = True
ProviderName = "Microsoft RSA SChannel Cryptographic Provider"
ProviderType = 12
RequestType = CMC
[RequestAttributes]
CertificateTemplate=TLSServer
Replace the CertificateTemplate with the name of your certificate template
Once you have your request file you need to take it to the certificate authority on a usb stick and use the web enrolment interface as usual to process the request file.
Take the output certificate back to the client open it and click install.
You sound like you have already tried a couple of things so my guess is that you are already aware of these, but I'm going to post them anyway, just in case: Certificate Command Line Tools. I am not sure, however, if they do what you want.
Go the http://caserver/CertSrv site that you mentioned using a 3rd computer that can see the CA server. Select the 3rd option, download a CA cert, cert chai, or CRL. On the next page select 'Download CA Certificate Chain', which will download the p7b file. Using a flash drive (or email, etc) transfer this to the other computer which will allow you to import it into the trusted root servers in IE.
http://technet.microsoft.com/en-us/library/cc787796.aspx
Suggestiong for the update, just in case - what is the trusted cert list of in the server?
Subject DN being the same as Windows username has never been a problem for me - although I don't use IIS much. However, somewhere in IIS there is sure to be a trusted certificate list. This error sounds to me like the server's trusted certs list does not include the CA or Root CA that issued the client certificate.
This is particularly true if you never get a certificate selection popup window in IE when you hit the IIS server - even though you have a certificate configured in your IE cert store. That means that the client hit the server, the server gave a list of trusted certs and the client didn't have a cert that fit the list. So the SSL session went to the Forbidden error state.
If the certificate selection window popped up, and you selected and sent the cert, there may be other configuration problems on the server side..