calculating linear equation of a line from line segment - line

Ideally, each of our lines will be in the form Ax+By=C, where A, B and C are the numbers which define the line. However, we are rarely given lines in this format, but we can easily generate such an equation from two points. Say we are given two different points, (x1, y1) and (x2, y2), and want to find A, B and C for the equation above.
We can do so by setting
A = y2-y1
B = x1-x2
C = Ax1+By1
The above facts is described in the link https://www.topcoder.com/community/data-science/data-science-tutorials/geometry-concepts-line-intersection-and-its-applications/
But i am unable to understand the concept of the below
A = y2-y1
B = x1-x2
C = A*x1+B*y1
solution ( the value of A,B and C).

Related

Python to fit a linear-plateau curve

I have curve that initially Y increases linearly with X, then reach a plateau at point C.
In other words, the curve can be defined as:
if X < C:
Y = k * X + b
else:
Y = k * C + b
The training data is a list of X ~ Y values. I need to determine k, b and C through a machine learning approach (or similar), since the data is noisy and refection point C changes over time. I want something more robust than get C through observing the current sample data.
How can I do it using sklearn or maybe scipy?
WLOG you can say the second equation is
Y = C
looks like you have a linear regression to fit the line and then a detection point to find the constant.
You know that in the high values of X, as in X > C you are already at the constant. So just check how far back down the values of X you get the same constant.
Then do a linear regression to find the line with value of X, X <= C
Your model is nonlinear
I think the smartest way to solve this is to do these steps:
find the maximum value of Y which is equal to k*C+b
M=max(Y)
drop this maximum value from your dataset
df1 = df[df.Y != M]
and then you have simple dataset to fit your X to Y and you can use sklearn for that

Posing a quadrating optimization problem for CVXOPT correctly

I am trying to minimize the function || Cx - d ||_2^2 with constraints Ax <= b. Some information about their sizes is as such:
* C is a (138, 22) matrix
* d is a (138,) vector
* A is a (138, 22) matrix
* b is a (138, ) vector of zeros
So I have 138 equation and 22 free variables that I'd like to optimize. I am currently coding this in Python and am using the transpose C.T*C to form a square matrix. The entire code looks like this
C = matrix(np.matmul(w, b).astype('double'))
b = matrix(np.matmul(w, np.log(dwi)).astype('double').reshape(-1))
P = C.T * C
q = -C.T * b
G = matrix(-constraints)
h = matrix(np.zeros(G.size[0]))
dt = np.array(solvers.qp(P, q, G, h, dims)['x']).reshape(-1)
where np.matmul(w, b) is C and np.matmul(w, np.log(dwi)) is d. Variables P and q are C and b multiplied by the transpose C.T to form a square multiplier matrix and constant vector, respectively. This works perfectly and I can find a solution.
I'd like to know whether this my approach makes mathematical sense. From my limited knowledge of linear algebra I know that a square matrix produces a unique solution, but is there is a way to run the same this to produce an overdetermined solution? I tried this but solver.qp said input Q needs to be a square matrix.
We can also parse in a dims argument to solver.qp, which I tried, but received the error:
use of function valued P, G, A requires a user-provided kktsolver.
How do I correctly setup dims?
Thanks a lot for any help. I'll try to clarify any questions as best as I can.

Karatsuba and Toom-3 algorithms for 3-digit number multiplications

I was wondering about this problem concerning Katatsuba's algorithm.
When you apply Karatsuba you basically have to do 3 multiplications per one run of the loop
Those are (let's say ab and cd are 2-digit numbers with digits respectively a, b, c and d):
X = bd
Y = ac
Z = (a+c)(c+d)
and then the sums we were looking for are:
bd = X
ac = Y
(bc + ad) = Z - X - Y
My question is: let's say we have two 3-digit numbers: abc, def. I found out that we will have to perfom only 5 multiplications to do so. I also found this Toom-3 algorithm, but it uses polynomials I can;t quite get. Could someone write down those multiplications and how to calculate the interesting sums bd + ae, ce+ bf, cd + be + af
The basic idea is this: The number 237 is the polynomial p(x)=2x2+3x+7 evaluated at the point x=10. So, we can think of each integer corresponding to a polynomial whose coefficients are the digits of the number. When we evaluate the polynomial at x=10, we get our number back.
What is interesting is that to fully specify a polynomial of degree 2, we need its value at just 3 distinct points. We need 5 values to fully specify a polynomial of degree 4.
So, if we want to multiply two 3 digit numbers, we can do so by:
Evaluating the corresponding polynomials at 5 distinct points.
Multiplying the 5 values. We now have 5 function values of the polynomial of the product.
Finding the coefficients of this polynomial from the five values we computed in step 2.
Karatsuba multiplication works the same way, except that we only need 3 distinct points. Instead of at 10, we evaluate the polynomial at 0, 1, and "infinity", which gives us b,a+b,a and d,d+c,c which multiplied together give you your X,Z,Y.
Now, to write this all out in terms of abc and def is quite involved. In the Wikipedia article, it's actually done quite nicely:
In the Evaluation section, the polynomials are evaluated to give, for example, c,a+b+c,a-b+c,4a+2b+c,a for the first number.
In Pointwise products, the corresponding values for each number are multiplied, which gives:
X = cf
Y = (a+b+c)(d+e+f)
Z = (a+b-c)(d-e+f)
U = (4a+2b+c)(4d+2e+f)
V = ad
In the Interpolation section, these values are combined to give you the digits in the product. This involves solving a 5x5 system of linear equations, so again it's a bit more complicated than the Karatsuba case.

Plot a third point past the two previously plotted points. Cocos2d

Ok so let me try to explain this the best way that i can.
I have two points plotted 'A' and 'B' and I am trying to plot a third point 'C' so that it is past point 'B' but along the same slope. I have the angle of the line and I would post some code but I really have no idea where to begin.
any help would be awesome!
Just a little code that i do have
CGPoint vector = ccpSub(touchedPoint, fixedPoint);
CGFloat rotateAngle = -ccpToAngle(vector);
Assuming that by this you mean you need a 3rd point C added such that all the points are colinear, all you need to do is calculate the vector that takes you from A to B, and then generate a new point by adding multiples of this vector to the point B. Choose the multiple based on the distance you want C to be from B.
As an example, say A = (2,2), B = (4,3). Then the vector from A to B is given by (2,1).
All you need to do then is work out how far your new point is from B and add a multiple K*(2,1) to your point B where K is chosen to meet the requirements of your distance
I am assuming you are in 2D, but the same method would apply in higher dimensions
My math is rusty, but the linear equation is generally represented as y=m*x+b, where m is the slope, and b is the y-intercept. You can get m, the slope, by taking the difference of the y values and dividing that by the difference in the x values, e.g., if A = (2,2) and B = (4,3), then m is (3-2)/(4-2) or 0.5. Then, you can solve the linear equation for b, the y-intercept, i.e. b=y-m*x and then plug in either of the data points, e.g. if we plug in the x and y values for point A, you get b = 2 - 0.5 * 2 = 1. Now knowing the slope, m (0.5 in this example), and the y-intercept, b (1 in this example), you can calculate the y for any x value using y=m*x+b, in this case y=0.5*x+1.
So, if touchedPoint and fixedPoint are CGPoint, you can calculate the slope and y-intercept from fixedPoint and touchedPoint like so:
double m = (fixedPoint.y - touchedPoint.y) / (fixedPoint.x - touchedPoint.x);
double b = fixedPoint.y - m * fixedPoint.x;
Now, you don't say how you want to determine where this third point, C, is. But if you, for example, knew the x coordinate for this new point C, you can calculate the y coordinate that falls on the same line as follows:
CGPoint pointC;
pointC.x = 400; // or set this to whatever you want
pointC.y = m * pointC.x + b;

Approaches to converting a table of possibilities into logical statements

I'm not sure how to express this problem, so my apologies if it's already been addressed.
I have business rules summarized as a table of outputs given two inputs. For each of five possible value on one axis, and each of five values on another axis, there is a single output. There are ten distinct possibilities in these 25 cells, so it's not the case that each input pair has a unique output.
I have encoded these rules in TSQL with nested CASE statements, but it's hard to debug and modify. In C# I might use an array literal. I'm wondering if there's an academic topic which relates to converting logical rules to matrices and vice versa.
As an example, one could translate this trivial matrix:
A B C
-- -- -- --
X 1 1 0
Y 0 1 0
...into rules like so:
if B OR (A and X) then 1 else 0
...or, in verbose SQL:
CASE WHEN FieldABC = 'B' THEN 1
WHEN FieldABX = 'A' AND FieldXY = 'X' THEN 1
ELSE 0
I'm looking for a good approach for larger matrices, especially one I can use in SQL (MS SQL 2K8, if it matters). Any suggestions? Is there a term for this type of translation, with which I should search?
Sounds like a lookup into a 5x5 grid of data. The inputs on axis and the output in each cell:
Y=1 Y=2 Y=3 Y=4 Y=5
x=1 A A D B A
x=2 B A A B B
x=3 C B B B B
x=4 C C C D D
x=5 C C C C C
You can store this in a table of x,y,outvalue triplets and then just do a look up on that table.
SELECT OUTVALUE FROM BUSINESS_RULES WHERE X = #X and Y = #Y;