I have confusion in this particular line-->
result = (double) hi * (1 << 30) * 4 + lo;
of the following code:
void access_counter(unsigned *hi, unsigned *lo)
// Set *hi and *lo to the high and low order bits of the cycle
// counter.
{
asm("rdtscp; movl %%edx,%0; movl %%eax,%1" // Read cycle counter
: "=r" (*hi), "=r" (*lo) // and move results to
: /* No input */ // the two outputs
: "%edx", "%eax");
}
double get_counter()
// Return the number of cycles since the last call to start_counter.
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
if (result < 0) {
fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);
}
return result;
}
The thing I cannot understand is that why is hi being multiplied with 2^30 and then 4? and then low added to it? Someone please explain what is happening in this line of code. I do know that what hi and low contain.
The short answer:
That line turns a 64bit integer that is stored as 2 32bit values into a floating point number.
Why doesn't the code just use a 64bit integer? Well, gcc has supported 64bit numbers for a long time, but presumably this code predates that. In that case, the only way to support numbers that big is to put them into a floating point number.
The long answer:
First, you need to understand how rdtscp works. When this assembler instruction is invoked, it does 2 things:
1) Sets ecx to IA32_TSC_AUX MSR. In my experience, this generally just means ecx gets set to zero.
2) Sets edx:eax to the current value of the processor’s time-stamp counter. This means that the lower 64bits of the counter go into eax, and the upper 32bits are in edx.
With that in mind, let's look at the code. When called from get_counter, access_counter is going to put edx in 'ncyc_hi' and eax in 'ncyc_lo.' Then get_counter is going to do:
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
What does this do?
Since the time is stored in 2 different 32bit numbers, if we want to find out how much time has elapsed, we need to do a bit of work to find the difference between the old time and the new. When it is done, the result is stored (again, using 2 32bit numbers) in hi / lo.
Which finally brings us to your question.
result = (double) hi * (1 << 30) * 4 + lo;
If we could use 64bit integers, converting 2 32bit values to a single 64bit value would look like this:
unsigned long long result = hi; // put hi into the 64bit number.
result <<= 32; // shift the 32 bits to the upper part of the number
results |= low; // add in the lower 32bits.
If you aren't used to bit shifting, maybe looking at it like this will help. If lo = 1 and high = 2, then expressed as hex numbers:
result = hi; 0x0000000000000002
result <<= 32; 0x0000000200000000
result |= low; 0x0000000200000001
But if we assume the compiler doesn't support 64bit integers, that won't work. While floating point numbers can hold values that big, they don't support shifting. So we need to figure out a way to shift 'hi' left by 32bits, without using left shift.
Ok then, shifting left by 1 is really the same as multiplying by 2. Shifting left by 2 is the same as multiplying by 4. Shifting left by [omitted...] Shifting left by 32 is the same as multiplying by 4,294,967,296.
By an amazing coincidence, 4,294,967,296 == (1 << 30) * 4.
So why write it in that complicated fashion? Well, 4,294,967,296 is a pretty big number. In fact, it's too big to fit in an 32bit integer. Which means if we put it in our source code, a compiler that doesn't support 64bit integers may have trouble figuring out how to process it. Written like this, the compiler can generate whatever floating point instructions it might need to work on that really big number.
Why the current code is wrong:
It looks like variations of this code have been wandering around the internet for a long time. Originally (I assume) access_counter was written using rdtsc instead of rdtscp. I'm not going to try to describe the difference between the two (google them), other than to point out that rdtsc does not set ecx, and rdtscp does. Whoever changed rdtsc to rdtscp apparently didn't know that, and failed to adjust the inline assembler stuff to reflect it. While your code might work fine despite this, it might do something weird instead. To fix it, you could do:
asm("rdtscp; movl %%edx,%0; movl %%eax,%1" // Read cycle counter
: "=r" (*hi), "=r" (*lo) // and move results to
: /* No input */ // the two outputs
: "%edx", "%eax", "%ecx");
While this will work, it isn't optimal. Registers are a valuable and scarce resource on i386. This tiny fragment uses 5 of them. With a slight modification:
asm("rdtscp" // Read cycle counter
: "=d" (*hi), "=a" (*lo)
: /* No input */
: "%ecx");
Now we have 2 fewer assembly statements, and we only use 3 registers.
But even that isn't the best we can do. In the (presumably long) time since this code was written, gcc has added both support for 64bit integers and a function to read the tsc, so you don't need to use asm at all:
unsigned int a;
unsigned long long result;
result = __builtin_ia32_rdtscp(&a);
'a' is the (useless?) value that was being returned in ecx. The function call requires it, but we can just ignore the returned value.
So, instead of doing something like this (which I assume your existing code does):
unsigned cyc_hi, cyc_lo;
access_counter(&cyc_hi, &cyc_lo);
// do something
double elapsed_time = get_counter(); // Find the difference between cyc_hi, cyc_lo and the current time
We can do:
unsigned int a;
unsigned long long before, after;
before = __builtin_ia32_rdtscp(&a);
// do something
after = __builtin_ia32_rdtscp(&a);
unsigned long long elapsed_time = after - before;
This is shorter, doesn't use hard-to-understand assembler, is easier to read, maintain and produces the best possible code.
But it does require a relatively recent version of gcc.
Related
what will happen when the integer crosses its limit? The output is 3595 , and how it will come? And it is 2 byte type ?
#include<stdio.h>
#include<conio.h>
void main()
{
int n=12,res=1;
clrscr();
while(n>3)
{
n+=3;
res*=3;
}
printf("%d",n*res);
getch();
}
The program will have undefined behavior.
The condition you gave is non terminating. It's a loop where the condition will never be terminated in a well defined manner.
You will go on multiplying and then once it will overflow. And then if you get a negative result in n or <=3 then it will stop. And in the mean time res has also overflown. As a result you will not be sure how this program behaves. We can't be sure of what the result will be.
The behaviour is undefined - you should not rely on anything specific. Common manifestations on int overflow are:
Wraparound such that 1 + INT_MAX becomes INT_MIN. This is what every Windows PC I have encountered does. The bit pattern produced by the operation matches the unsigned cousin exactly.
Clamping such that 1 + INT_MAX becomes INT_MAX. I last observed this on a machine (with signed magnitude int) running a variant of UNIX in the 1990s.
i have tried the below but do not seem to get the correct value in the end:
I have a number that may be larger than 32bit and hence I want to store it into two 32 bit array indices.
I broke them up like:
int[0] = lgval%(2^32);
int[1] = lgval/(2^32);
and reassembling the 64bit value I tried like:
CPU: PowerPC e500v2
lgval= ((uint64)int[0]) | (((uint64)int[1])>>32);
mind shift to right since we're on big endian. For some reason I do not get the correct value at the end, why not? What am I doing wrong here?
The ^ operator is xor, not power.
The way you want to do this is probably:
uint32_t split[2];
uint64_t lgval;
/* ... */
split[0] = lgval & 0xffffffff;
split[1] = lgval >> 32;
/* code to operate on your 32-bit array elements goes here */
lgval = ((uint64_t)split[1] << 32) | (uint64_t)(split[0]);
As Raymond Chen has mentioned, endianness is about storage. In this case, you only need to consider endianness if you want to access the bytes in your split-32-bit-int as a single 64-bit value. This probably isn't a good idea anyway.
This question already has answers here:
ROL / ROR on variable using inline assembly in Objective-C
(2 answers)
Closed 9 years ago.
A few days ago, I asked the question below. Because I was in need of a quick answer, I added:
The code does not need to use inline assembly. However, I haven't found a way to do this using Objective-C / C++ / C instructions.
Today, I would like to learn something. So I ask the question again, looking for an answer using inline assembly.
I would like to perform ROR and ROL operations on variables in an Objective-C program. However, I can't manage it – I am not an assembly expert.
Here is what I have done so far:
uint8_t v1 = ....;
uint8_t v2 = ....; // v2 is either 1, 2, 3, 4 or 5
asm("ROR v1, v2");
the error I get is:
Unknown use of instruction mnemonic with unknown size suffix
How can I fix this?
A rotate is just two shifts - some bits go left, the others right - once you see this rotating is easy without assembly. The pattern is recognised by some compilers and compiled using the rotate instructions. See wikipedia for the code.
Update: Xcode 4.6.2 (others not tested) on x86-64 compiles the double shift + or to a rotate for 32 & 64 bit operands, for 8 & 16 bit operands the double shift + or is kept. Why? Maybe the compiler understands something about the performance of these instructions, maybe the just didn't optimise - but in general if you can avoid assembler do so, the compiler invariably knows best! Also using static inline on the functions, or using macros defined in the same way as the standard macro MAX (a macro has the advantage of adapting to the type of its operands), can be used to inline the operations.
Addendum after OP comment
Here is the i86_64 assembler as an example, for full details of how to use the asm construct start here.
First the non-assembler version:
static inline uint32 rotl32_i64(uint32 value, unsigned shift)
{
// assume shift is in range 0..31 or subtraction would be wrong
// however we know the compiler will spot the pattern and replace
// the expression with a single roll and there will be no subtraction
// so if the compiler changes this may break without:
// shift &= 0x1f;
return (value << shift) | (value >> (32 - shift));
}
void test_rotl32(uint32 value, unsigned shift)
{
uint32 shifted = rotl32_i64(value, shift);
NSLog(#"%8x <<< %u -> %8x", value & 0xFFFFFFFF, shift, shifted & 0xFFFFFFFF);
}
If you look at the assembler output for profiling (so the optimiser kicks in) in Xcode (Product > Generate Output > Assembly File, then select Profiling in the pop-up menu as the bottom of the window) you will see that rotl32_i64 is inlined into test_rotl32 and compiles down to a rotate (roll) instruction.
Now producing the assembler directly yourself is a bit more involved than for the ARM code FrankH showed. This is because to take a variable shift value a specific register, cl, must be used, so we need to give the compiler enough information to do that. Here goes:
static inline uint32 rotl32_i64_asm(uint32 value, unsigned shift)
{
// i64 - shift must be in register cl so create a register local assigned to cl
// no need to mask as i64 will do that
register uint8 cl asm ( "cl" ) = shift;
uint32 shifted;
// emit the rotate left long
// %n values are replaced by args:
// 0: "=r" (shifted) - any register (r), result(=), store in var (shifted)
// 1: "0" (value) - *same* register as %0 (0), load from var (value)
// 2: "r" (cl) - any register (r), load from var (cl - which is the cl register so this one is used)
__asm__ ("roll %2,%0" : "=r" (shifted) : "0" (value), "r" (cl));
return shifted;
}
Change test_rotl32 to call rotl32_i64_asm and check the assembly output again - it should be the same, i.e. the compiler did as well as we did.
Further note that if the commented out masking line in rotl32_i64 is included it essentially becomes rotl32 - the compiler will do the right thing for any architecture all for the cost of a single and instruction in the i64 version.
So asm is there is you need it, using it can be somewhat involved, and the compiler will invariably do as well or better by itself...
HTH
The 32bit rotate in ARM would be:
__asm__("MOV %0, %1, ROR %2\n" : "=r"(out) : "r"(in), "M"(N));
where N is required to be a compile-time constant.
But the output of the barrel shifter, whether used on a register or an immediate operand, is always a full-register-width; you can shift a constant 8-bit quantity to any position within a 32bit word, or - as here - shift/rotate the value in a 32bit register any which way.
But you cannot rotate 16bit or 8bit values within a register using a single ARM instruction. None such exists.
That's why the compiler, on ARM targets, when you use the "normal" (portable [Objective-]C/C++) code (in << xx) | (in >> (w - xx)) will create you one assembler instruction for a 32bit rotate, but at least two (a normal shift followed by a shifted or) for 8/16bit ones.
iOS / Objective-C: I have a large array of boolean values.
This is an inefficient way to store these values – at least eight bits are used for each element when only one is needed.
How can I optimise?
see CFMutableBitVector/CFBitVector for a CFType option
Try this:
#define BITOP(a,b,op) \
((a)[(size_t)(b)/(8*sizeof *(a))] op ((size_t)1<<((size_t)(b)%(8*sizeof *(a)))))
Then for any array of unsigned integer elements no larger than size_t, the BITOP macro can access the array as a bit array. For example:
unsigned char array[16] = {0};
BITOP(array, 40, |=); /* sets bit 40 */
BITOP(array, 41, ^=); /* toggles bit 41 */
if (BITOP(array, 42, &)) return 0; /* tests bit 42 */
BITOP(array, 43, &=~); /* clears bit 43 */
etc.
You use the bitwise logical operations and bit-shifting. (A Google search for these terms might give you some examples.)
Basically you declare an integer type (including int, char, etc.), then you "shift" integer values to the bit you want, then you do an OR or an AND with the integer.
Some quick illustrative examples (in C++):
inline bool bit_is_on(int bit_array, int bit_number)
{
return ((bit_array) & (1 << bit_number)) ? true : false;
}
inline void set_bit(int &bit_array, int bit_number)
{
bit_array |= (1 << bit_number);
}
inline void clear_bit(int &bit_array, int bit_number)
{
bit_array &= ~(1 << bit_number);
}
Note that this provides "bit arrays" of constant size (sizeof(int) * 8 bits). Maybe that's OK for you, or maybe you will want to build something on top of this. (Or re-use whatever some library provides.)
This will use less memory than bool arrays... HOWEVER... The code the compiler generates to access these bits will be larger and slower. So unless you have a large number of objects that need to contain these bit arrays, it might have a net-negative impact on both speed and memory usage.
#define BITOP(a,b,op) \
((a)[(size_t)(b)/(8*sizeof *(a))] op (size_t)1<<((size_t)(b)%(8*sizeof *(a))))
will not work ...
Fix:
#define BITOP(a,b,op) \
((a)[(size_t)(b)/(8*sizeof *(a))] op ((size_t)1<<((size_t)(b)%(8*sizeof *(a)))))
I came across this question as I am writing a bit array framework that is intent to manage large amounts of 'bits' similar to Java BitSet. I was looking to see if the name I decided on was in conflict with other Objective-C frameworks.
Anyway, I'm just starting this and am deciding whether to post it on SourceForge or other open source hosting sites.
Let me know if you are interested
Edit: I've created the project, called BitArray, on SourceForge. The source is in the SF SVN repository and I've also uploaded a compiled framework. This LINK will get your there.
Frank
There's a common way to store multiple values in one variable, by using a bitmask. For example, if a user has read, write and execute privileges on an item, that can be converted to a single number by saying read = 4 (2^2), write = 2 (2^1), execute = 1 (2^0) and then add them together to get 7.
I use this technique in several web applications, where I'd usually store the variable into a field and give it a type of MEDIUMINT or whatever, depending on the number of different values.
What I'm interested in, is whether or not there is a practical limit to the number of values you can store like this? For example, if the number was over 64, you couldn't use (64 bit) integers any more. If this was the case, what would you use? How would it affect your program logic (ie: could you still use bitwise comparisons)?
I know that once you start getting really large sets of values, a different method would be the optimal solution, but I'm interested in the boundaries of this method.
Off the top of my head, I'd write a set_bit and get_bit function that could take an array of bytes and a bit offset in the array, and use some bit-twiddling to set/get the appropriate bit in the array. Something like this (in C, but hopefully you get the idea):
// sets the n-th bit in |bytes|. num_bytes is the number of bytes in the array
// result is 0 on success, non-zero on failure (offset out-of-bounds)
int set_bit(char* bytes, unsigned long num_bytes, unsigned long offset)
{
// make sure offset is valid
if(offset < 0 || offset > (num_bytes<<3)-1) { return -1; }
//set the right bit
bytes[offset >> 3] |= (1 << (offset & 0x7));
return 0; //success
}
//gets the n-th bit in |bytes|. num_bytes is the number of bytes in the array
// returns (-1) on error, 0 if bit is "off", positive number if "on"
int get_bit(char* bytes, unsigned long num_bytes, unsigned long offset)
{
// make sure offset is valid
if(offset < 0 || offset > (num_bytes<<3)-1) { return -1; }
//get the right bit
return (bytes[offset >> 3] & (1 << (offset & 0x7));
}
I've used bit masks in filesystem code where the bit mask is many times bigger than a machine word. think of it like an "array of booleans";
(journalling masks in flash memory if you want to know)
many compilers know how to do this for you. Adda bit of OO code to have types that operate senibly and then your code starts looking like it's intent, not some bit-banging.
My 2 cents.
With a 64-bit integer, you can store values up to 2^64-1, 64 is only 2^6. So yes, there is a limit, but if you need more than 64-its worth of flags, I'd be very interested to know what they were all doing :)
How many states so you need to potentially think about? If you have 64 potential states, the number of combinations they can exist in is the full size of a 64-bit integer.
If you need to worry about 128 flags, then a pair of bit vectors would suffice (2^64 * 2).
Addition: in Programming Pearls, there is an extended discussion of using a bit array of length 10^7, implemented in integers (for holding used 800 numbers) - it's very fast, and very appropriate for the task described in that chapter.
Some languages ( I believe perl does, not sure ) permit bitwise arithmetic on strings. Giving you a much greater effective range. ( (strlen * 8bit chars ) combinations )
However, I wouldn't use a single value for superimposition of more than one /type/ of data. The basic r/w/x triplet of 3-bit ints would probably be the upper "practical" limit, not for space efficiency reasons, but for practical development reasons.
( Php uses this system to control its error-messages, and I have already found that its a bit over-the-top when you have to define values where php's constants are not resident and you have to generate the integer by hand, and to be honest, if chmod didn't support the 'ugo+rwx' style syntax I'd never want to use it because i can never remember the magic numbers )
The instant you have to crack open a constants table to debug code you know you've gone too far.
Old thread, but it's worth mentioning that there are cases requiring bloated bit masks, e.g., molecular fingerprints, which are often generated as 1024-bit arrays which we have packed in 32 bigint fields (SQL Server not supporting UInt32). Bit wise operations work fine - until your table starts to grow and you realize the sluggishness of separate function calls. The binary data type would work, were it not for T-SQL's ban on bitwise operators having two binary operands.
For example .NET uses array of integers as an internal storage for their BitArray class.
Practically there's no other way around.
That being said, in SQL you will need more than one column (or use the BLOBS) to store all the states.
You tagged this question SQL, so I think you need to consult with the documentation for your database to find the size of an integer. Then subtract one bit for the sign, just to be safe.
Edit: Your comment says you're using MySQL. The documentation for MySQL 5.0 Numeric Types states that the maximum size of a NUMERIC is 64 or 65 digits. That's 212 bits for 64 digits.
Remember that your language of choice has to be able to work with those digits, so you may be limited to a 64-bit integer anyway.