I have the following records:
My goal is to check the SUM of the children for each parent and make sure it is 1 (or 100%).
In the example above, you have a first parent:
12043
It has 2 children:
12484 & 12485
Child (now parent) 12484 has child 12486. The child here (12486) has a percentage of 0.6 (which is NOT 100%). This is NOT OK.
Child (now parent) 12485 has child 12487. The child here (12487) has a percentage of 1 (or 100%). This is OK.
I need to sum the percentages of each nested children and get that value because it doesn't sum up to 100%, then I have to display a message. I'm having a hard time coming up with a query for this. Can someone give me a hand?
This is what I tried and I'm getting the "The statement terminated. The maximum recursion 100 has been exhausted before statement completion." error message.
with cte
as (select cp.parent_payee_id,
cp.payee_id,
cp.payee_pct,
0 as level
from dbo.tp_contract_payee cp
where cp.participant_id = 12067
and cp.payee_id = cp.parent_payee_id
union all
select cp.parent_payee_id,
cp.payee_id,
cp.payee_pct,
c.level + 1 as level
from dbo.tp_contract_payee cp
inner join cte c
on cp.parent_payee_id = c.payee_id
where cp.participant_id = 12067
)
select *
from cte
I believe something like the following should work:
WITH RECURSIVE recCTE AS
(
SELECT
parent_payee_id as parent,
payee_id as child,
payee_pct
1 as depth,
parent_payee_id + '>' + payee_id as path
FROM
table
WHERE
--top most node
parent_payee_id = 12043
AND payee_id <> parent_payee_id --prevent endless recursion
UNION ALL
SELECT
table.parent_payee_id as parent,
table.payee_id as child,
table.payee_pct,
recCTE.depth + 1 as Depth,
recCTE.path + '>' + table.payee_id as path
FROM
recCTE
INNER JOIN table ON
recCTE.child = table.parent_payee_id AND
recCTE.child <> table.payee_id --again prevent records where parent is child
Where depth < 15 --prevent endless cycles
)
SELECT DISTINCT parent
FROM recCTE
GROUP BY parent
HAVING sum(payee_pct) <> 1;
This differs from yours mostly in the WHERE statements on both the Recursive Seed (query before UNION) and the recursive term (query after UNION). I believe yours is too restrictive, especially in the recursive term since you want to allow records that are children of 12067 through, but then you only allow 12067 as the parent id to pull in.
Here, though, we pull every descendant of 12043 (from your example table) and it's payee_pct. Then we analyze each parent in the final SELECT and the sum of all it's payee_pcts, which are essentially that parent's first childrens sum(payee_pct). If any of them are not a total of 1, then we display the parent in the output.
At any rate, between your query and mine, I would imagine this is pretty close to the requirements, so it should be tweaks to get you exactly where you need to be if this doesn't do the trick.
Related
I have a SQL Server Table that contains a 'Hierarchy/Tree' of User Permissions.
Each Individual Permission can have values: 1 [Allowed], Blank [Not Allowed] & 0 [specifically Cancelled].
Each Individual Permission can be in one or more 'Permission Groups' & a User can be assigned all the Individual Permissions in one or more Permission Groups.
Each of the 'Permission Groups', in turn, can be in one or more higher level permission groups ... and eventually, all Permissions Groups are under a Master Group named 'Main Menu'.
This SQL Code:
Select
'Main Menu' Base,
Description Level1,
ParentId,
SecurityNodesId,
ListOrder,
Category,
LastModified
From SecurityNodes
Where ParentId = 1
Order By Description
Produces the following Output:
'Main Menu' has a ParentId of NULL [Not Shown in screenshot].
The 'Level1' 'Folders' contain other folders or Individual Permissions which are 'Referenced' by the Values under SecurityNodesId.
For instance, a search for SecurityNodesId 102 [Level1 - Administration] in the ParentId column returns this list of Sub Folders under 'Level2':
So ... I can access each of these sub folders by writing separate queries.
But what I want is to have an end result that displays every Node of this Permissions Tree in Table form like this:
Main Menu Level1 Level2 Level3 Level4 PermissionName PermissionValue
I have never had to do something this complex before, though I have done plenty of self-joins.
I am currently thinking that I would need to do a self join to each self join ... to get to successive Levels of the Tree ... but I believe there may be a 'recursive' approach to this that might be more efficient?
I would appreciate any help I can get with this.
Thanks in advance!
The way to solve this is with a Recursive CTE.
These are definitely more advanced than your usual SQL, but once you have your head wrapped around them, they are pretty easy to put together and VERY useful for hierarchical data (any table that stores a parent/child relationship).
A recursive CTE has two parts, separated by a UNION ALL.
The recursive seed which is ran only once and determines the starting result set for the recursion. For you, this is likely any record with a parentId of 1.
The recursive term (or member) which joins the cte (itself) to the table that holds the parent/child relationship. It will run over and over and over and over again until the Join or a WHERE filter causes it to return no new records.
In your case, it will look something like below. Note that I don't know what your starting table looks like. Namely the Level1 column from your original SQL isn't clear if that is the column name or an alias you call Level1. Furthermore it's not at all clear how you derive a "Permission Group" or "Permission Value" from this data. But... at any rate this should get you in the ballpark:
WITH reccte as (
/*
* To start the recursion we need a "Seed"... or a set of data
* that defines the starting point on which we iterate after
* the UNION ALL below.
*
* The seed here is all records with a parentid of 1
*/
SELECT Base,
ParentID,
SecurityNodesID,
Level as Level1,
NULL as Level2,
NULL as Level3,
NULL as Level4,
'?' as PermissionName,
Category as PermissionValue,
1 as depth, --track how deep we recurse
Base + '>' + Level as path --keep track of where we've been and what has led us to this point in recurssion
FROM SecurityNodes
UNION ALL
/*
* This section is the part that iterates. It continues to join
* all rows that have been collected up that point with the Security
* Nodes table until that join fails.
*/
SELECT
reccte.Base,
SecurityNodes.ParentID,
SecurityNodes.SecurityNodesID,
reccte.Level1,
/*
* Depending on how deep we are in the security hierarchy
* capture the level string to the appropriate column
*/
CASE WHEN depth = 1 THEN SecurityNodes.Level ELSE reccte.Level2,
CASE WHEN depth = 2 THEN SecurityNodes.Level ELSE reccte.Level3,
CASE WHEN depth = 3 THEN SecurityNodes.Level ELSE reccte.Level4,
'?' as PermissionName,
SecurityNodes.Category as PermissionValue,
reccte.depth + 1, --increment depth
reccte.path + '>' + SecurityNodes.Level --add to the path so we know how we got here
FROM reccte
INNER JOIN SecurityNodes
/*Join parent to child*/
ON reccte.SecurityNodesId = SecurityNodes.parentId
WHERE depth < 5 --Stop looking up if we go deeper than 4 levels.
)
SELECT *
FROM reccte
While we track depth here and stop the recursion if we hit a depth of 4, you could stop the recursion with the MAXRECURSIVE option/hint. That would just go at the end of your query:
SELECT *
FROM reccte
OPTION (MAXRECURSION 4);
It's important to add either/or to your recursive CTE otherwise you risk causing an infinite loop should a security node have a child that is also one of its ancestors which would cause it to cycle endlessly.
OPTION (MAXRECURSION 2);
I followed through on an idea I mentioned in my original post and it looks like I have achieved what I was wanting.
I don't think it is the best possible solution because I know how many total levels there currently are. If we suddenly add another level or two, the SQL will not capture everything and I'll manually have to add one or more Left Joins.
Select
'Main Menu' Base,
sn.Description Level1,
sn2.Description Level2,
sn3.Description Level3,
sn4.Description Level4,
sn.ParentId,
sn.SecurityNodesId,
sn.ListOrder,
sn.Category,
sn.LastModified
From
SecurityNodes sn
Left Join SecurityNodes sn2 On sn2.ParentId = sn.SecurityNodesId
Left Join SecurityNodes sn3 On sn3.ParentId = sn2.SecurityNodesId
Left Join SecurityNodes sn4 On sn3.ParentId = sn3.SecurityNodesId
Order By sn.ParentId, sn.Description
I would still appreciate any suggestions for a more elegant/dynamic way of achieving what I need ... but for now, the above SQL is doing the job.
Hello friendly internet wizards.
I am attempting to extract a levelled bill of materials (BOM) from a dataset, running in DB2 on an AS400 server.
I have constructed most of the query (with a lot of help from online resources), and this is what I have so far;
#set item = '10984'
WITH BOM (origin, PMPRNO, PMMTNO, BOM_Level, BOM_Path, IsCycle, IsLeaf) AS
(SELECT CONNECT_BY_ROOT PMPRNO AS origin, PMPRNO, PMMTNO,
LEVEL AS BOM_Level,
SYS_CONNECT_BY_PATH(TRIM(PMMTNO), ' : ') BOM_Path,
CONNECT_BY_ISCYCLE IsCycle,
CONNECT_BY_ISLEAF IsLeaf
FROM MPDMAT
WHERE PMCONO = 405 AND PMFACI = 'M01' AND PMSTRT = 'STD'
START WITH PMPRNO = :item
CONNECT BY NOCYCLE PRIOR PMMTNO = PMPRNO)
SELECT 0 AS BOM_Level, '' AS BOM_Path, MMITNO AS Part_Number, MMITDS AS Part_Name,
IFSUNO AS Supplier_Number, IDSUNM AS Supplier_Name, IFSITE AS Supplier_Part_Number
FROM MITMAS
LEFT OUTER JOIN MITVEN ON MMCONO = IFCONO AND MMITNO = IFITNO AND IFSUNO <> 'ZGA'
LEFT OUTER JOIN CIDMAS ON MMCONO = IDCONO AND IDSUNO = IFSUNO
WHERE MMCONO = 405
AND MMITNO = :item
UNION ALL
SELECT BOM.BOM_Level, BOM_Path, BOM.PMMTNO AS Part_Number, MMITDS AS Part_Name,
IFSUNO AS Supplier_Number, IDSUNM AS Supplier_Name, IFSITE AS Supplier_Part_Number
FROM BOM
LEFT OUTER JOIN MITMAS ON MMCONO = 405 AND MMITNO = BOM.PMMTNO
LEFT OUTER JOIN MITVEN ON IFCONO = MMCONO AND IFITNO = MMITNO AND IFSUNO <> 'ZGA' AND MMMABU = '2'
LEFT OUTER JOIN CIDMAS ON MMCONO = IDCONO AND IDSUNO = IFSUNO
;
This is correctly extracting the components for a given item, as well as the sub-components (etc).
Current data looks like this (I have stripped out some columns that aren't relevant to the issue);
https://pastebin.com/LUnGKRqH
My issue is the order that the data is being presented in.
As you can see in the pastebin above, the first column is the 'level' of the component. This starts with the parent item at level 0, and can theoretically go down as far as 99 levels.
The path is also show there, so for example the second component 853021 tells us that it's a 2nd level component, the paths up to INST363 (shown later in the list as a 1st level), then up to the parent at level 0.
I would like for the output to show in path order (for lack of a better term).
Therefore, after level 0, it should be showing the first level 1 component, and then immediately be going into it's level 2 components and so on, until no further level is found. Then at that point, it returns back up the path to the next valid record.
I hope I have explained that adequately, but essentially the data should come out as;
Level
Path
Item
0
10984
1
: INST363
INST363
2
: INST363 : 853021
853021
1
: 21907
21907
Any help that can be provided would be very much appreciated!
Thanks,
This is an interesting query. Frankly I am surprised it works as well as it does since it is not structured the way I usually structure queries with a recursive CTE. The main issue is that while you have the Union in there, it does not appear to be within the CTE portion of the query.
When I write a recursive CTE, it is generally structured like this:
with cte as (
priming select
union all
secondary select)
select * from cte
So to get a BOM from an Item Master that looks something like:
CREATE TABLE item (
ItemNo Char(10) PRIMARY KEY,
Description Char(50));
INSERT INTO item
VALUES ('Item0', 'Root Item'),
('Item1a', 'Second Level Item'),
('Item1b', 'Another Second Level Item'),
('Item2a', 'Third Level Item');
and a linkage table like this:
CREATE TABLE linkage (
PItem Char(10),
CItem Char(10),
Quantity Dec(5,0),
PRIMARY KEY (PItem, CItem));
INSERT INTO linkage
VALUES ('Item0', 'Item1a', 2),
('Item0', 'Item1b', 3),
('Item1b', 'Item2a', 5)
The recursive CTE to list a BOM for 'Item0' looks like this:
WITH bom (Level, ItemNo, Description, Quantity)
AS (
-- Load BOM with root item
SELECT 0,
ItemNo,
Description,
1
FROM Item
WHERE ItemNo = 'Item0'
UNION ALL
-- Retrieve all child items
SELECT a.Level + 1,
b.CItem,
c.Description,
a.Quantity * b.Quantity
FROM bom a
join linkage b ON b.pitem = a.itemno
join item c ON c.itemno = b.citem)
-- Set the list order
SEARCH DEPTH FIRST BY itemno SET seq
-- List BOM
SELECT * FROM bom
ORDER BY seq
Here are my results:
LEVEL
ITEMNO
DESCRIPTION
QUANTITY
0
Item0
Root Item
1
1
Item1a
Second Level Item
2
1
Item1b
Another Second Level Item
3
2
Item2a
Third Level Item
15
Notice the search clause, that generates a column named seq which you can use to sort the output either depth first or breadth first. Depth first is what you want here.
NOTE: This isn't necessarily an optimum query since the description is in the CTE, and that increases the size of the CTE result set without really adding anything to it that couldn't be added in the final select. But it does make things a bit simpler since the 'priming query' retrieves the description.
Note also: the column list on the with clause following BOM. This is there to remove the confusion that DB2 had with the expected column list when the explicit column list was omitted. It is not always necessary, but if DB2 complains about an invalid column list, this will fix it.
I'm working off this thread: HierarchyID: HierarchyID: Get all descendants for a list of parents
I have a table that uses a HierarchyID, and I need a query that gives me all descendants for specified parent(s) in a single set.
Here's my table, populated:
DECLARE #Ph TABLE (ProductHierarchyNode HIERARCHYID, ProductHierarchyId INT)
INSERT INTO #Ph (ProductHierarchyNode, ProductHierarchyId) VALUES
(hierarchyid::Parse('/1/'), 1),
(hierarchyid::Parse('/1/1/'), 2),
(hierarchyid::Parse('/1/1/2/'), 3),
(hierarchyid::Parse('/1/1/2/1/'), 4)
This query works perfectly for a SINGLE id: 4. It gives me back that item, plus all of its descendants.
SELECT
*
FROM
#Ph
WHERE
(SELECT ProductHierarchyNode FROM #Ph WHERE ProductHierarchyId = 4).IsDescendantOf(ProductHierarchyNode) = 1
However, that query isn't very useful for a list of ID's. So for a list, I'm trying the answer in the thread I linked to above:
SELECT
child.*
FROM
#Ph as parent
INNER JOIN #Ph as child on child.ProductHierarchyNode.IsDescendantOf(parent.ProductHierarchyNode) = 1
WHERE
parent.ProductHierarchyId in (4)
I'm sure I'm overlooking something obvious. Just not sure what it is. But this only returns me the parent item and no children.
Can't spot my error.
I feel like you have this backwards... you want DESCENDENTS, but you're asking for things where the parent is 4... nothing has a parent of 4.
Don't you really want this?
SELECT
child.*
FROM
#Ph as parent
INNER JOIN #Ph as child on child.ProductHierarchyNode.IsDescendantOf(parent.ProductHierarchyNode) = 1
WHERE
parent.ProductHierarchyId in (1)
This returns all the rows you say you're expecting, and makes more sense to me as you're asking for all descendent of 1 (the root parent). 2 is a child/descendent of 1, 3 is a child/descendent of 2, and 4 is a child/descendent of 3.
The "WHERE parent.ProductHierarchyId IN (1)" is saying "find me all nodes where 1 is a parent/ancestor".
In the first query, you're asking for all nodes where 4 is a descendent, so that makes sense.
In the second query, you're asking for all descendents of 1. If you want "all ancestors of 4" that'd be a different query.
I made a table to store a Binary Tree like below:
- NodeID
- NodeLeft
- NodeRight
NodeLeft store the ID of the left node. And Node right store the ID of the right node.
I need to write a Procedure that if i pass a NodeID, it'll count how many child node on the left and how many child node on the right. Can separate to 2 Procedure.
Try this:
WITH CTE_Node(
NodeID,
NodeRigth,
NodeLeft,
Level,
RigthOrLeft
)
AS
(
SELECT
NodeID,
NodeRigth,
NodeLeft,
0 AS Level,
'P'
FROM Node
WHERE NodeID = 1
UNION ALL
SELECT
Node.NodeID,
Node.NodeRigth,
Node.NodeLeft,
Level + 1,
CASE WHEN CTE_Node.NodeLeft = Node.NodeID THEN 'R' ELSE 'L' END
FROM Node
INNER JOIN CTE_Node ON CTE_Node.NodeLeft = Node.NodeID
OR CTE_Node.NodeRigth = Node.NodeID
)
SELECT DISTINCT RigthOrLeft,
COUNT(NodeID) OVER(PARTITION BY RigthOrLeft)
FROM CTE_Node
Here is an SQL Fiddle.
The Level is just there to see how is it working. May you can use it later.
I found this topic.
http://www.sqlservercentral.com/Forums/Topic1152543-392-1.aspx
The table structure is different from my designed table. But it is an Binary Tree so i can use it.
And the SQL Fiddle is very helpful.
SELECT
AI_636.PARENT_ID AS PART,
MAX(b.AP_1036) AS ESTEND,
MAX(a.AP_3222) AS ACTEND
FROM
AI_636
LEFT OUTER JOIN AI_665 a
ON
(
a.AP_1033 = AI_636.PARENT_ID
AND SUBSTR(a.AP_1028, 1, 4) >= '2000'
AND a.AP_1030 NOT IN ('994')
AND
(
a.AP_1033 NOT IN
(
SELECT AI_665.AP_1033 FROM AI_665 WHERE AI_665.AP_3222 IS NULL
)
)
)
JOIN AI_665 b
ON
(
b.AP_1033 = AI_636.PARENT_ID
AND SUBSTR(b.AP_1028, 1, 4) >= '2000'
)
GROUP BY AI_636.PARENT_ID
This query is a small part of a larger one and it causes the entire call to execute very slowly.
Basically, there is a parent operation and then several child operations underneath it. The estimated vs actual end dates of the operations are only stored at the child level, so to derive one for the parent level, I am trying to find the largest dates at the child level. The problem I run into is when a child operation is not completed, it has a NULL end date, and the MAX() function ignores these. I am getting around this by joining the child operations table to itself and narrowing it down to only include child operations whose siblings all have non-NULL end dates.
Is there any way I can optimize the search for parent operations with children with non-NULL end dates?
My last answer had a mistake, but maybe this will help:
AND NOT EXISTS (SELECT NULL
FROM AI_665 a2
WHERE a2.AP_1033 = a.AP_1033
AND a2.AP_3222 IS NULL)
You must create an descending index to speed up the MAX()