What's the conventional way to indicate an error inside defmacro? - error-handling

What is the conventional, well-behaved way for a macro to indicate that it's been passed invalid arguments?
(defmacro defthisthing [name & definitions] . . .)
I'm writing a macro right now to accept a whole bunch of definitions. If the same thing gets defined twice, the macro should complain. Similarly, if one of the definitions uses a term that's not defined elsewhere in the same macro invocation, the macro should complain, hopefully with line and column numbers so the programmer can see exactly where the error is.
I'm currently thinking that throwing an exception makes the most sense, because invalid macro arguments are in fact a compilation error. Everything should shut down no differently than if the compiler found unbalanced parentheses.
If that's correct, what is the conventional exception to throw? And how do you include the filename and line number of the offending snippet of code?
And if that's not correct, what is the more Clojurely approach?

Throwing exceptions sounds fine. I just checked the Clojure source and this is how it is done there:
(defmacro let ...) calls (defmacro assert-args ...), which throws exceptions if the arguments don’t meet their requirements.

Related

Compilation error only when using the repl

I am getting an error only when the code is entered line by line in the repl. It works when the whole program is pasted at once, or from the command line.
class A {
method a () {
return 1;
}
}
class B {
method b () {
return 2;
}
}
This is the error statement:
===SORRY!=== Error while compiling:
Package 'B' already has a method 'b' (did you mean to declare a multi method?)
This screen shot might make it clearer. On the left I just pasted the code, and on the right I entered it line by line. The code is still working but what is causing the error?
For some reason, I could not reproduce this using just one class.
I can reproduce that error, and looks like a REPL bug, or simply something the REPL is not prepared to do. This, for instance, will also raise an exception:
class A {
method a() {
return 1;
}
};
class foo {
has $.bar = 3;
};
In either form, either pasting it directly or in pieces. It's always the second class. It's probably related to the way EVAL works, but I really don't know. At the end of the day, the REPL can only take you so far and I'm not totally sure this is within the use case. You might want to use Comma or any other IDE, like emacs, for anything that's more complicated than a line; Comma also provides help for evaluating expressions, and even grammars.
I think Comma is the bees knees. And I almost never use the repl. But I enjoy:
Golfing Your example is a more than adequate MRE. But I love minimizing bug examples.
Speculating I think I can see what's going on.
Searching issue queues Rakudo has two issue queues on GH: old and new.
Spelunking compiler code Rakudo is mostly written in Raku; maybe we can work out what this problem is in the REPL code (which is part of the compiler)?
Golfing
First, the bug:
Welcome to 𝐑𝐚𝐤𝐮𝐝𝐨™ v2021.03.
Implementing the 𝐑𝐚𝐤𝐮™ programming language v6.d.
Built on MoarVM version 2021.03.
To exit type 'exit' or '^D'
> # 42
Nil
> { subset a
*
===SORRY!=== Error while compiling:
Redeclaration of symbol 'a'.
at line 3
------> <BOL>⏏<EOL>
Commentary:
To get on the fairway, enter any line that's not just whitespace, and press Enter.
Pick the right iron; open a block with {, declare some named type, and press Enter. The REPL indicates you're on the green by displaying the * multi-line prompt.
To sink the ball, just hit Enter.
Second, golfing in aid of speculation:
> # 42
Nil
> { BEGIN say 99
99
* }
99
>
(BEGIN marks code that is to be run during compilation as soon as the compiler encounters it.)
Speculating
Why does the initial # 42 evaluation matter? Presumably the REPL tries to maintain declarations / state (of variables and types etc) during a REPL session.
And as part of that it's presumably remembering all previous code in a session.
And presumably it's seeing anything but blank lines as counting as previous code.
And the mere existence of some/any previous code somehow influences what state the REPL is maintaining and/or what it's asking the compiler to do.
Maybe.
Why does a type declaration matter when, say, a variable declaration doesn't?
Presumably the REPL and/or compiler is distinguishing between these two kinds of declaration.
Ignoring the REPL, when compiling code, a repeated my declaration only raises a warning, whereas a repeated type declaration is an error. Quite plausibly that's why?
Why does a type declaration have this effect?
Presumably the type successfully compiles and only after that an exception is thrown (because the code is incomplete due to the missing closing brace).
Then the REPL asks the compiler to again try to compile the multi-line code thus far entered, with whatever additional code the user has typed (in my golf version I type nothing and just hit Enter, adding no more code).
This repeated compile attempt includes the type declaration again, which type declaration, because the compilation state from the prior attempt to compile the multi-line code is somehow being retained, is seen by the compiler as a repeat declaration, causing it to throw an exception that causes the REPL to exit multi-line mode and report the error.
In other words, the REPL loop is presumably something like:
As each line is entered, pass it to the compiler, which compiles the code and throws an exception if anything goes wrong.
If an exception is thrown:
2.1 If in multi-line mode (with * prompt), then exit multi-line mode (go back to > prompt) and display exception message.
2.2 Else (so not in multi-line mode), if analysis (plausibly very basic) of the exception and/or entered code suggests multi-line mode would be useful, then enter that mode (with * prompt). In multi-line mode, the entire multi-line of code so far is recompiled each time the user presses Enter.
2.3 Else, display exception message.
(Obviously there's something else going on related to initialization given the need to start with some evaluation to manifest this bug, but that may well be a completely distinct issue.)
Searching
I've browsed through all open Rakudo issues in its old and new queues on GH that match 'repl'. I've selected four that illustrate the range of difficulties the REPL has with maintaining the state of a session:
REPL loses custom operators. "Interestingly, if a postfix operator like this is exported by a module which is loaded by the REPL, the REPL can successfully parse that operator just once, after which it will fail with an error similar to the above." Is this related to the way the bug this SO is focused on doesn't manifest until it's a second or later evaluation?
Perl6 REPL forgets the definition of infix sub. Looks like a dupe of the above issue, but includes extra debugging goodies from Brian Duggan. ❤️
REPL messes up namespaces when Foo is used after Foo::Bar.
In REPL cannot bind to scalars declared on earlier lines.
One thing I haven't done is checked whether these bugs all still exist. My guess is they do. And there are many others like them. Perhaps they have a somewhat common cause? I've no idea. Perhaps we need to look at the code...
Spelunking
A search of the Rakudo sources for 'repl' quickly led to a REPL module. Less than 500 lines of high level Raku code! \o/ (For now, let's just pretend we can pretty much ignore digging into the code it calls...)
From my initial browser, I'll draw attention to:
A sub repl:
sub repl(*%_) {
my $repl := REPL.new(nqp::getcomp("Raku"), %_, True);
nqp::bindattr($repl,REPL,'$!save_ctx',nqp::ctxcaller(nqp::ctx));
$repl.repl-loop(:no-exit);
}
Blame shows that Liz added this a couple months ago. It's very tangential to this bug, but I'm guessing methods and variables with ctx in their name are pretty central to things so this is hopefully a nice way to start pondering that.
method repl-eval. 30 lines or so.
REPL: loop { ... }. 60 lines or so.
That'll do for tonight. I'll post this then return to it all another day.

Sidestepping errors by defining vars with SETF

Crew,
I'm one of those types that insists on defining my variables with SETF. I've upgraded to a new machine (and a new version of SBCL) and it's not letting me get away with doing that (naturally, I get the appropriate "==> undefined variable..." error)
My problem here is, I've already written 20,000 lines of code (incorrectly) defining my variables with SETF and i don't like the prospect of re-writing all of my code to get the interpreter to digest it all.
Is there a way to shut down that error such that interpretation can continue?
Any help is appreciated.
Sincerely,
-Todd
One option is to set up your package environment so that a bare symbol setf refers to my-gross-hack::setf instead of cl:setf. For example, you could set things up like:
(defpackage #:my-gross-hack
(:use #:cl)
(:shadow #:setf))
;;; define your own setf here
(defpackage #:my-project
(use #:cl)
(shadowing-import-from #:my-gross-hack #:setf))
;;; proceed to use setf willy-nilly
You can handle warnings, so that compilation terminates; while doing so, you can collect enough information to fix your code.
Tested with SBCL 1.3.13.
Handle warnings
I have warnings when using setf with undefined variables. The following invokes the debugger, from which I can invoke muffle-warning:
(handler-bind ((warning #'invoke-debugger))
(compile nil '(lambda () (setf *shame* :on-you))))
The warning is of type SIMPLE-WARNING, which has the following accessors: SIMPLE-CONDITION-FORMAT-CONTROL and SIMPLE-CONDITION-FORMAT-ARGUMENTS.
(defparameter *setf-declarations* nil)
(defun handle-undefined-variables (condition)
(when (and (typep condition 'simple-warning)
(string= (simple-condition-format-control condition)
"undefined ~(~A~): ~S"))
(let* ((arguments (simple-condition-format-arguments condition))
(variable (and (eq (first arguments) :variable)
(second arguments))))
(when variable
(proclaim `(special ,variable))
(push variable *setf-declarations*)
(invoke-restart 'muffle-warning)))))
Use that as a handler:
(handler-bind ((warning #'handle-undefined-variables))
;; compilation, quickload, asdf ...
)
The above handler is not robust: the error message might change in future versions, the code assumes the arguments follow a given pattern, ... But this needs only work once, since from now on you are going to declare all your variables.
Fix your code
Now that your code compiles, get rid of the ugly. Or at least, add proper declarations.
(with-open-file (out #P"declarations.lisp" :direction :output)
(let ((*package* (find-package :cl-user)))
(format out
"(in-package :cl-user)~%~%~{(defvar ~(~S~))~%~}"
*setf-declarations*)))
This iterates over all the symbols you collected and write declarations inside a single file.
In my example, it would contain:
(in-package :cl-user)
(defvar *shame*)
Try to cleanly recompile without handling errors, by loading this file early in your compilation process, but after packages are defined. Eventually, you may want to find the time to move those declarations in place of the setf expressions that triggered a warning.

Meaning of `:=` Syntax in VBA methods

When writing the following VBA, what is the root cause of the error "Expected =" given that we are using the Format:=2.
Workbook.Open (filename, Format:=2)
I understand that this format works when setting the variable as in the following code, but why does it work here and not in the above format?
Set wrkb = Workbook.Open (filename, Format:=2)
Also what is this operator called, := and how is it used?
It's not an operator, it's a named argument.
You can chose the order of the arguments/parameters by directly specifying what they are.
The concept of named arguments also exists in multiple modern languages, such as c# (its optional, just like in VBA) and swift (by default it's required, but you can disable it).
Named arguments also allow you to omit arguments that are optional altogether, but pass an argument that is further back in the list of arguments. A good way to try named arguments out is the messagebox, since it has many optional arguments with default values.
Example: MsgBox only specifying title:
MsgBox Title:="wew lad"
Or, in the more modern way of writing vb(a) code:
Call MsgBox(Title:="wew lad")
The MsgBox is a good example, since you can call it normally, and then specify a parameter further back directly (works with other methods too):
Call MsgBox("Yes!", Title:="wew lad")
Once there are named parameters, you can't add ordered parameters after:
'Call MsgBox (Prompt:="Yes!", vbOkCancel Title:="wew lad")
'this doesnt work!
Now, why does this raise an error:
MsgBox ("Hello", Title:="test")
This is some of the weirder parts of vba. Calling functions with return values but ignoring the value while using parentheses is a bit broken.
You can circumvent this by adding a Call in front of it (vba then knows it can ignore the result).
This would look like this:
Call MsgBox ("Hello", Title:="test")
Honestly, I don't know why this is, but I've had it cause really weird bugs. When you use the parentheses syntax, I can really recommend using the Call keyword before the method call.
As Macro Man mentioned, you can also omit the parentheses, instead of using Call:
MsgBox "Hello", Title:="test"
And it will work, too. This was the original vba coding style and isn't really used anymore.

Which one is better for me to use: "defer-panic-recover" or checking "if err != nil { //dosomething}" in golang?

I've made a large program that opens and closes files and databases, perform writes and reads on them etc among other things. Since there no such thing as "exception handling in go", and since I didn't really know about "defer" statement and "recover()" function, I applied error checking after every file-open, read-write, database entry etc. E.g.
_,insert_err := stmt.Run(query)
if insert_err != nil{
mylogs.Error(insert_err.Error())
return db_updation_status
}
For this, I define db_updation_status at the beginning as "false" and do not make it "true" until everything in the program goes right.
I've done this in every function, after every operation which I believe could go wrong.
Do you think there's a better way to do this using defer-panic-recover? I read about these here http://golang.org/doc/articles/defer_panic_recover.html, but can't clearly get how to use them. Do these constructs offer something similar to exception-handling? Am I better off without these constructs?
I would really appreciate if someone could explain this to me in a simple language, and/or provide a use case for these constructs and compare them to the type of error handling I've used above.
It's more handy to return error values - they can carry more information (advantage to the client/user) than a two valued bool.
What concerns panic/recover: There are scenarios where their use is completely sane. For example, in a hand written recursive descent parser, it's quite a PITA to "bubble" up an error condition through all the invocation levels. In this example, it's a welcome simplification if there's a deferred recover at the top most (API) level and one can report any kind of error at any invocation level using, for example
panic(fmt.Errorf("Cannot %v in %v", foo, bar))
If an operation can fail and returns an error, than checking this error immediately and handling it properly is idiomatic in go, simple and nice to check if anything gets handled properly.
Don't use defer/recover for such things: Needed cleanup actions are hard to code, especially if stuff gets nested.
The usual way to report an error to a caller is to return an error as an extra return value. The canonical Read method is a well-known instance; it returns a byte count and an error.
But what if the error is unrecoverable? Sometimes the program simply cannot continue.
For this purpose, there is a built-in function panic that in effect creates a run-time error that will stop the program (but see the next section). The function takes a single argument of arbitrary type—often a string—to be printed as the program dies. It's also a way to indicate that something impossible has happened, such as exiting an infinite loop.
http://golang.org/doc/effective_go.html#errors

How does compiler handle missing parameter names in Objective-C?

I have run into someone else's code that declares methods like this:
- (void) method:(id)a:(NSString*)b { }
The compiler accepts this code, giving just a warning:
'a' used as the name of the previous parameter rather than as part of the selector
The code declares various functions with this type and then invokes them through NSSelectorFromString, using the signature "methodname::". So it's all consistent.
I wonder if that method signature is just a mistake or if there's more to it. Since it's used consistently in the code, I don't think this is a typo. I don't know the author so I can't tell if this is code of a genius or the opposite.
Is 'b' an anonymous parameter? (If so, shouldn't it rather be written with a blank between the "a" and ":" to indicate this better?) I can't find anything about anon parms in the ObjC docs, though.
Will there be any change in behavior if I change the syntax to giving the second parameter a name, and fixing the signature reference accordingly? I plan to make this change to get rid of the warnings, but I wonder I might create an issue that I'm not aware of.
Everything you describe is pretty much correct. It's very bad style, but technically it's just a two-argument selector which happens to have no text before the second :. I wouldn't call b an anonymous argument since you can still give it a name, it just doesn't have any descriptive text before it as part of the selector's name.
Yes, there should probably be a space after the a.
If you want to rename it, you can use Xcode's standard Refactor->Rename functionality and just insert some text before the second :. It will update all the references and you should encounter no problems.
You can use the signature method::, even though it is not recommended by most people.
Just insert a space character before each : separating the parameters, and the compiler is happy:
- (void) method:(id)a :(NSString*)b
On page 16 "Message Syntax" of The Objective-C Programming Language
this is called an "unlabeled argument", or an "argument without keyword".
Of course you can change it to
- (void) method:(id)a withB:(NSString*)b
but this changes the selector to method:withB:.