Bayesian multilevel model with R2WINBUGS - bayesian

data <-
list("N","J","K","pa","unit","hosp","tech","teach","beds","unitsur","we","expe",
"full")
inits1<-list(p0=0.1,tau1=0,tau2=0, beta =c(1,1,1,1,1,1,1,1))
inits2<-list(p0=0.5,tau1=1,tau2=1, beta =c(1,1,1,1,1,1,1,1))
data.inits<-list(inits1, inits2)
## Parameters to estimate
parameters <- c("beta", "tau1","tau2", "p0")
Burnout.sim=bugs(data, inits=data.inits, parameters, "Burnoutmodel.txt",
n.chains = 2, n.iter = 1000,
bugs.directory="C:/Users/molasey/Desktop/WINBUGS/winbugs14/WinBUGS14/",
debug=TRUE)
When I run the above code using the library(R2WINBUGS), the winbugs panel displays the following message:
expected collection operator c
compile(2)
inits(1,C:/Users/molasey/AppData/Local/Temp/RtmpmAA9bi/inits1.txt)
command #Bugs:inits cannot be executed (is greyed out)
Help me out pls.

Related

Is there a method for converting a winmids object to a mids object?

Suppose I create 10 multiply-imputed datasets and use the (wonderful) MatchThem package in R to create weights for my exposure variable. The MatchThem package takes a mids object and converts it to an object of the class winmids.
My desired output is a mids object - but with weights. I hope to pass this mids object to BRMS as follows:
library(brms)
m0 <- brm_multiple(Y|weights(weights) ~ A, data = mids_data)
Open to suggestions.
EDIT: Noah's solution below will unfortunately not work.
The package's first author, Farhad Pishgar, sent me the following elegant solution. It will create a mids object from a winmidsobject. Thank you Farhad!
library(mice)
library(MatchThem)
#"weighted.dataset" is our .wimids object
#Extracting the original dataset with missing value
maindataset <- complete(weighted.datasets, action = 0)
#Some spit-and-polish
maindataset <- data.frame(.imp = 0, .id = seq_len(nrow(maindataset)), maindataset)
#Extracting imputed-weighted datasets in the long format
alldataset <- complete(weighted.datasets, action = "long")
#Binding them together
alldataset <- rbind(maindataset, alldataset)
#Converting to .mids
newmids <- as.mids(alldataset)
Additionally, for BRMS, I worked out this solution which instead creates a list of dataframes. It will work in fewer steps.
library("mice")
library("dplyr")
library("MatchThem")
library("brms") # for bayesian estimation.
# Note, I realise that my approach here is not fully Bayesian, but that is a good thing! I need to ensure balance in the exposure.
# impute missing data
data("nhanes2")
imp <- mice(nhanes2, printFlag = FALSE, seed = 0, m = 10)
# MathThem. This is just a fast method
w_imp <- weightthem(hyp ~ chl + age, data = imp,
approach = "within",
estimand = "ATE",
method = "ps")
# get individual data frames with weights
out <- complete(w_imp, action ="long", include = FALSE, mild = TRUE)
# assemble individual data frames into a list
m <- 10
listdat<- list()
for (i in 1:m) {
listdat[[i]] <- as.data.frame(out[[i]])
}
# pass the list to brms, and it runs as it should!
fit_1 <- brm_multiple(bmi|weights(weights) ~ age + hyp + chl,
data = listdat,
backend = "cmdstanr",
family = "gaussian",
set_prior('normal(0, 1)',
class = 'b'))
brm_multiple() can take in a list of data frames for its data argument. You can produce this from the wimids object using complete(). The output of complete() with action = "all" is a mild object, which is a list of data frames, but this is not recognized by brm_multiple() as such. So, you can just convert it to a list. This should look like the following:
df_list <- complete(mids_data, "all")
class(df_list) <- "list"
m0 <- brm_multiple(Y|weights(weights) ~ A, data = df_list)
Using complete() automatically adds a weights column to the resulting imputed data frames.

How can effects from fixed-effects model in plm be plotted in R?

I cannot get a plot for the effects I get from a fixed-effects model in plm. I tried using effect(), predict() and all kinds of packages like sjPlot, etc.
Is there a way of plotting it, especially also with interactions?
I always get error messages like:
Error in mod.matrix %*% scoef : non-conformable arguments
Try fixef? For instance, see below:
plm_2 <- plm(wealth ~ Volatility, data = ds_panel,index=c("rho"), model = "within")
y1 <- fixef(plm_2)
x1 <- as.numeric(names(y1))
plot(y1~x1, pch = 20, ylab = "FE", xlab = expression(rho))

Changing label name when retraining Inception on Google Cloud ML

I currently follow the tutorial to retrain Inception for image classification:
https://cloud.google.com/blog/big-data/2016/12/how-to-train-and-classify-images-using-google-cloud-machine-learning-and-cloud-dataflow
However, when I make a prediction with the API I get only the index of my class as a label. However I would like that the API actually gives me a string back with the actual class name e.g instead of
​predictions:
- key: '0'
prediction: 4
scores:
- 8.11998e-09
- 2.64907e-08
- 1.10307e-06
I would like to get:
​predictions:
- key: '0'
prediction: ROSES
scores:
- 8.11998e-09
- 2.64907e-08
- 1.10307e-06
Looking at the reference for the Google API it should be possible:
https://cloud.google.com/ml-engine/reference/rest/v1/projects/predict
I already tried to change in the model.py the following to
outputs = {
'key': keys.name,
'prediction': tensors.predictions[0].name,
'scores': tensors.predictions[1].name
}
tf.add_to_collection('outputs', json.dumps(outputs))
to
if tensors.predictions[0].name == 0:
pred_name ='roses'
elif tensors.predictions[0].name == 1:
pred_name ='tulips'
outputs = {
'key': keys.name,
'prediction': pred_name,
'scores': tensors.predictions[1].name
}
tf.add_to_collection('outputs', json.dumps(outputs))
but this doesn't work.
My next idea was to change this part in the preprocess.py file. So instead getting the index I want to use the string label.
def process(self, row, all_labels):
try:
row = row.element
except AttributeError:
pass
if not self.label_to_id_map:
for i, label in enumerate(all_labels):
label = label.strip()
if label:
self.label_to_id_map[label] = label #i
and
label_ids = []
for label in row[1:]:
try:
label_ids.append(label.strip())
#label_ids.append(self.label_to_id_map[label.strip()])
except KeyError:
unknown_label.inc()
but this gives the error:
TypeError: 'roses' has type <type 'str'>, but expected one of: (<type 'int'>, <type 'long'>) [while running 'Embed and make TFExample']
hence I thought that I should change something here in preprocess.py, in order to allow strings:
example = tf.train.Example(features=tf.train.Features(feature={
'image_uri': _bytes_feature([uri]),
'embedding': _float_feature(embedding.ravel().tolist()),
}))
if label_ids:
label_ids.sort()
example.features.feature['label'].int64_list.value.extend(label_ids)
But I don't know how to change it appropriately as I could not find someting like str_list. Could anyone please help me out here?
Online prediction certainly allows this, the model itself needs to be updated to do the conversion from int to string.
Keep in mind that the Python code is just building a graph which describes what computation to do in your model -- you're not sending the Python code to online prediction, you're sending the graph you build.
That distinction is important because the changes you have made are in Python -- you don't yet have any inputs or predictions, so you won't be able to inspect their values. What you need to do instead is add the equivalent lookups to the graph that you're exporting.
You could modify the code like so:
labels = tf.constant(['cars', 'trucks', 'suvs'])
predicted_indices = tf.argmax(softmax, 1)
prediction = tf.gather(labels, predicted_indices)
And leave the inputs/outputs untouched from the original code

Dynamic Axes with a custom RNN

I’m running into a number of issues relating to dynamic axes. I am trying to implement a convolutional rnn similar to the of the LSTM() function but handles sequential image input and outputs an image.
I’m able to build the network and pass dummy data through it to produce output, but when I try to compute the error with an input_variable label I consistently see the following error:
RuntimeError: Node '__v2libuid__Input471__v2libname__img_label' (InputValue operation): DataFor: FrameRange's dynamic axis is inconsistent with matrix: {numTimeSteps:1, numParallelSequences:2, sequences:[{seqId:0, s:0, begin:0, end:1}, {seqId:1, s:1, begin:0, end:1}]} vs. {numTimeSteps:2, numParallelSequences:1, sequences:[{seqId:0, s:0, begin:0, end:2}]}`
If I understand this error message correctly, it claims that the value I passed in as the label has inconsistent axes to what is expected with 2 time steps and 1 parallel sequence, when what is desired is 1 time-step and 2 sequences. This makes sense to me, but I’m not sure how the data I’m passing in is not conforming to this. Here are (roughly) the variable declarations and eval statements:
…
img_input = input_variable(shape=img_shape, dtype=np.float32, name="img_input")
convlstm = Recurrence(conv_lstm_cell, initial_state=initial_state)(img_input)
out = select_last(convlstm)
img_label = input_variable(shape=img_shape, dynamic_axes=out.dynamic_axes, dtype=np.float32, name="img_label”)
error = squared_error(out, img_label)
…
dummy_input = np.ones(shape=(2, 3, 3, 32, 32)) # (batch, seq_len, channels, height, width)
dummy_label = np.ones(shape=(2, 3, 32, 32)) # (batch, channels, height, width)
out = error.eval({img_input:dummy_input, img_label:dummy_label})
I believe part of the issue is with the dynamic_axes set when creating the img_label input_variable, I’ve also tried setting it to [Axis.default_batch_axis()] and not setting it at all and either squared error complains about inconsistent axes between out and img_label or I see the same error as above.
The only issue I see with the above setup is that your dummy label should have an explicit dynamic axis so it should be declared as
dummy_label = np.ones(shape=(2, 1, 3, 32, 32))
Assuming your convlstm works similar to an lstm, then the following works without issues for me and it evaluates the loss for two input/output pairs.
x = C.input_variable((3,32,32))
cx = convlstm(x)
lx = C.sequence.last(cx)
y = C.input_variable(lx.shape, dynamic_axes=lx.dynamic_axes)
loss = C.squared_error(y, lx)
x0 = np.arange(2*3*3*32*32,dtype=np.float32).reshape(2,3,3,32,32)
y0 = np.arange(2*1*3*32*32,dtype=np.float32).reshape(2,1,3,32,32)
loss.eval({x:x0, y:y0})

Tensorflow: LSTM with moving average of weights of another LSTM

I would like to have an LSTM in tensorflow whose weights are the exponential moving average of the weights of another LSTM. So basically I have this code with some input placeholder and some initial state placeholder:
def test_lstm(input_ph, init_ph, scope):
cell = tf.nn.rnn_cell.LSTMCell(128, use_peepholes=True)
input_ph = tf.transpose(input_ph, [1, 0, 2])
input_list = tf.unpack(input_ph)
with tf.variable_scope(scope) as vs:
outputs, states = tf.nn.rnn(cell, input_list, initial_state=init_ph)
theta = [v for v in tf.all_variables() if v.name.startswith(vs.name)]
return outputs, theta
lstm_1, theta_1 = test_lstm(input_1, state_init_1, scope="lstm_1")
What I would like to do now is something similar along these lines (which don't actually work because the exponential moving average puts the tag "ema" behind the variable name of the weights and they do not appear in variable scope because they were not created with tf.get_variable):
ema = tf.train.ExponentialMovingAverage(decay=1-self.tau, name="ema")
with tf.variable_scope("lstm_2"):
maintain_averages_theta_1 = ema.apply(theta_1)
theta_2_1 = [ema.average(x) for x in theta_1]
lstm_2 , theta_2_2 = test_lstm(input_2, state_init_2, scope="lstm_2"
where eventually theta_2_1 would be equal to theta_2_2 (or throw an exception because the variables already exist).
Change (3/May/2018): I added one line apart from the old answer. The old one itself is self-sufficient to this question, but it real practice we initialize 'target network' as the same value to the 'behavioural network'. I added this point. Search the line having 'Change0': You need to do this only once right after when the target network's parameters are just initialized. Without 'Change0', you first round of gradient-based update would become nasty since Q_target and Q_behaviour are not correlated while you need both to be somewhat related ex) TD = r + gamma*Q_target - Q_behaviour for the update.
Seems a bit late but hope this helps.
The critical problem of TF-RNN series possess is that we cannot directly designate the variables for RNNs unlike plain feedforward or convolutional NNs, so that we can't do simple work - get EMAed vars and plug into the network.
Let's go into the real deal(I attached a practice code to look-up for this, so please refer EMA_LSTM.py).
Shall we say, there is a network function containing LSTM:
def network(in_x,in_h):
# Input: 'in_x' is the input sequence, 'in_h' is the initial hidden cell(c,m)
# Output: 'hidden_outputs' is the output sequence(c-sequence), 'net' is the list of parameters used in this network function
cell = tf.nn.rnn_cell.BasicLSTMCell(3, state_is_tuple=True)
in_h = tf.nn.rnn_cell.LSTMStateTuple(in_h[0], in_h[1])
hidden_outputs, last_tuple = tf.nn.dynamic_rnn(cell, in_x, dtype=tf.float32, initial_state=in_h)
net = [v for v in tf.trainable_variables() if tf.contrib.framework.get_name_scope() in v.name]
return hidden_outputs, net
Then you declare tf.placeholder for the necessary inputs, which are:
in_x = tf.placeholder("float", [None,None,6])
in_c = tf.placeholder("float", [None,3])
in_m = tf.placeholder("float", [None,3])
in_h = (in_c, in_m)
Lastly, we run a session that proceeds the network() function with specified inputs:
init_cORm = np.zeros(shape=(1,3))
input = np.ones(shape=(1,1,6))
print '========================new-1(beh)=============================='
with tf.Session() as sess:
with tf.variable_scope('beh', reuse=False) as beh:
result, net1 = network(in_x,in_h)
sess.run(tf.global_variables_initializer())
list = sess.run([result, in_x, in_h, net1], feed_dict={
in_x : input,
in_c : init_cORm,
in_m : init_cORm
})
print 'result:', list[0]
print 'in_x:' , list[1]
print 'in_h:', list[2]
print 'net1:', list[3][0][0][:4]
Now, we are going to make the var_list called 'net4' that contains the ExponentialMovingAverage(EMA)-ed values of 'net1', as in below with original 'net1' being first assigned in beh session above and newly assigned in below by adding 1. for each element:
ema = tf.train.ExponentialMovingAverage(decay=0.5)
target_update_op = ema.apply(net1)
init_new_vars_op = tf.initialize_variables(var_list=[v for v in tf.global_variables() if 'ExponentialMovingAverage' in v.name]) # 'initialize_variables' will be replaced with 'variables_initializer' in 2017
sess.run(init_new_vars_op)
sess.run([param4.assign(param1.eval()) for param4, param1 in zip(net4,net1)]) # Change0
len_net1 = len(net1)
net1_ema = [[] for i in range(len_net1)]
for i in range(len_net1):
sess.run(net1[i].assign(1. + net1[i]))
sess.run(target_update_op)
Note that
we only initialised(by declaring 'init_new_vars_op' then running the declaration job) the variables of their name containing 'ExponentialMovingAverage', if not the variables in net1 will also be newly initialised.
'net1' is newly assigned with +1 for every elements of the variables in 'net1'. If an element of 'net1' was -0.5 and is now 0.5 by +1, then we want to have 'net4' as 0. when the EMA decay rate is 0.5
Finally, we run the EMA job with 'sess.run(target_update_op)'
Eventually, we declare 'net4' first with the 'network()' function and then assign&run the EMA(net1) values into 'net4'. When you run 'sess.run(result)', then it will be the one with EMA(net1)-ed variables.
with tf.variable_scope('tare', reuse=False) as tare:
result, net4 = network(in_x,in_h)
len_net4 = len(net4)
target_assign = [[] for i in range(len_net4)]
for i in range(len_net4):
target_assign[i] = net4[i].assign(ema.average(net1[i]))
sess.run(target_assign[i].op)
list = sess.run([result, in_x, in_h, net4], feed_dict={
in_x : input,
in_c : init_cORm,
in_m : init_cORm
})
What's happened in here? You just indirectly declares the LSTM variables as 'net4' in the 'network()' function. Then in the for loop, we points out that 'net4' is actually EMA of 'net1' and 'net1+1.' . Lastly, with the net4 specified what to do with(via 'network()') and what values it takes(via 'for loop of .assign(ema.average()) to itself'), you run the process.
It is somewhat counter-intuitive that we declare the 'result' first and specifies the value of parameters second. However, that's the nature of TF what they exactly look for, as it is always logical to set variables, processes, and their relation first then to assign values, then runs the processes.
Lastly, few things to go further for the real machine learning codes:
In here, I just second assigned 'net1' with 'net1 + 1.'. In real case, this '+1.' step is where you 'sess.run()'(after you 'declare' in somewhere) your optimiser. So every-time after you 'sess.run(optimiser)', 'sess.run(target_update_op)' and then'sess.run(target_assign[i].op)' should follow to update your 'net4' along the EMA of 'net1'. Conceretly, you can do this job with different order like below:
ema = tf.train.ExponentialMovingAverage(decay=0.5)
target_update_op = ema.apply(net1)
with tf.variable_scope('tare', reuse=False) as tare:
result, net4 = network(in_x,in_h)
len_net4 = len(net4)
target_assign = [[] for i in range(len_net4)]
for i in range(len_net4):
target_assign[i] = net4[i].assign(ema.average(net1[i]))
init_new_vars_op = tf.initialize_variables(var_list=[v for v in tf.global_variables() if 'ExponentialMovingAverage' in v.name]) # 'initialize_variables' will be replaced with 'variables_initializer' in 2017
sess.run(init_new_vars_op)
sess.run([param4.assign(param1.eval()) for param4, param1 in zip(net4,net1)]) # Change0
Lastly, be aware that you must sess.run(ema.apply(net)) right after the net changes, and then sess.run(net_ema.assign(ema.average(net)). W/O .apply, net_ema will not get assigned with averaged value
len_net1 = len(net1)
net1_ema = [[] for i in range(len_net1)]
for i in range(len_net1):
sess.run(net1[i].assign(1. + net1[i]))
sess.run(target_update_op)
for i in range(len_net4):
sess.run(target_assign[i].op)
list = sess.run([result, in_x, in_h, net4], feed_dict={
in_x : input,
in_c : init_cORm,
in_m : init_cORm
})