"Adapting" is disabled for a WinBUGS model - bayesian

I created a model in WinBUGS. But when clicking the Model->Update menu, I noticed that the adapting option is disabled. So the inference will include all MCMC samples from the very beginning. I noticed that this is not the case for some WinBUGS examples. Has anyone seen this problem before? What a model setup can trigger disabling the adapting option?

Not all models require an adaptation phase - it depends on what samplers are being used, and if these sampling algorithms require any tuning - e.g. a Metropolis(-Hastings) algorithm requires tuning of the proposal distribution variance, but a Gibbs sampler has no parameter to tune. The choice of sampler (in JAGS and I assume BUGS also) is determined by the software from the structure of your model at compile time. An extreme example is if you don't have any data in the model - in which case everything is simply forward sampled from the priors and no adaptation takes place.
Note that you should still be able to burn in the model (run the model without sampling) - so it is not true that all mcmc samples need to be included from the beginning. Adaptation is usually a relatively small part of the burnin phase anyway.

Related

Parallelization strategies for deep learning

What strategies and forms of parallelization are feasible and available for training and serving a neural network?:
inside a machine across cores (e.g. GPU / TPU / CPU)
across machines on a network or a rack
I'm also looking for evidence for how they may also be used in e.g. TensorFlow, PyTorch or MXNet.
Training
To my knowledge, when training large neural networks on large datasets, one could at least have:
Different cores or machines operate on different parts of the graph ("graph splitting"). E.g. backpropagation through the graph itself can be parallelized e.g. by having different layers hosted on different machines since (I think?) the autodiff graph is always a DAG.
Different cores or machines operate on different samples of data ("data splitting"). In SGD, the computation of gradients across batches or samples can also be parallelized (e.g. the gradients can be combined after computing them independently on different batches). I believe this is also called gradient accumulation (?).
When is each strategy better for what type of problem or neural network? Which modes are supported by modern libraries? and can one combine all four (2x2) strategies?
On top of that, I have read about:
Asynchronous training
Synchronous training
but I don't know what exactly that refers to, e.g. is it the computation of gradients on different data batches or the computation of gradients on different subgraphs? Or perhaps it refers to something else altogether?
Serving
If the network is huge, prediction / inference may also be slow, and the model may not fit on a single machine in memory at serving time. Are there any known multi-core and multi-node prediction solutions that work that can handle such models?
Training
In general, there are two strategies of parallelizing model training: data parallelism and model parallelism.
1. Data parallelism
This strategy splits training data into N partitions, each of which will be trained on different “devices” (different CPU cores, GPUs, or even machines). In contrast to training without data parallelism which produces one gradient per minibatch, we now have N gradients for each minibatch step. The next question is how we should combine these N gradients.
One way to do it is by averaging all the N gradients and then updating the model parameters once based on the average. This technique is called synchronous distributed SGD. By doing the average, we have a more accurate gradient, but with a cost of waiting all the devices to finish computing its own local gradient.
Another way is by not combining the gradients — each gradient will instead be used to update the model parameters independently. So, there will be N parameter updates for each minibatch step, in contrast to only one for the previous technique. This technique is called asynchronous distributed SGD. Because it doesn't have to wait other devices to finish, the async approach will take less time to complete a minibatch step than the sync approach will do. However, the async approach will produce a more noisy gradient, so it might need to complete more minibatch steps to catch up with the performance (in terms of loss) of the sync approach.
There are many papers proposing some improvements and optimizations on either approach, but the main idea is generally the same as described above.
In the literature there's been some disagreement on which technique is better in practice. At the end most people now settle on the synchronous approach.
Data Parallelism in PyTorch
To do synchronous SGD, we can wrap our model with torch.nn.parallel.DistributedDataParallel:
from torch.nn.parallel import DistributedDataParallel as DDP
# `model` is the model we previously initialized
model = ...
# `rank` is a device number starting from 0
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank])
Then we can train it similarly. For more details, you can refer to the official tutorial.
For doing asynchronous SGD in PyTorch, we need to implement it more manually since there is no wrapper similar to DistributedDataParallel for it.
Data Parallelism in TensorFlow/Keras
For synchronous SGD, we can use tf.distribute.MirroredStrategy to wrap the model initalization:
import tensorflow as tf
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = Model(...)
model.compile(...)
Then we can train it as usual. For more details, you can refer to the official guides on Keras website and TensorFlow website.
For asynchronous SGD, we can use tf.distribute.experimental.ParameterServerStrategy similarly.
2. Model Parallelism
This strategy splits the model into N parts, each of which will be computed on different devices. A common way to split the model is based on layers: different sets of layers are placed on different devices. But we can also split it more intricately depending on the model architecture.
Model Parallelism in TensorFlow and PyTorch
To implement model parallelism in either TensorFlow or PyTorch, the idea is the same: to move some model parameters into a different device.
In PyTorch we can use torch.nn.Module.to method to move a module into a different device. For example, suppose we want to create two linear layers each of which is placed on a different GPU:
import torch.nn as nn
linear1 = nn.Linear(16, 8).to('cuda:0')
linear2 = nn.Linear(8, 4).to('cuda:1')
In TensorFlow we can use tf.device to place an operation into a specific device. To implement the PyTorch example above in TensorFlow:
import tensorflow as tf
from tensorflow.keras import layers
with tf.device('/GPU:0'):
linear1 = layers.Dense(8, input_dim=16)
with tf.device('/GPU:1'):
linear2 = layers.Dense(4, input_dim=8)
For more details you can refer to the official PyTorch tutorial; or if you use TensorFlow you can even use a more high-level library like mesh.
3. Hybrid: Data and Model Parallelism
Recall that data parallelism only splits the training data, whereas model parallelism only splits the model structures. If we have a model so large that even after using either parallelism strategy it still doesn't fit in the memory, we can always do both.
In practice most people prefer data parallelism to model parallelism since the former is more decoupled (in fact, independent) from the model architecture than the latter. That is, by using data parallelism they can change the model architecture as they like, without worrying which part of the model should be parallelized.
Model Inference / Serving
Parallelizing model serving is easier than parallelizing model training since the model parameters are already fixed and each request can be processed independently. Similar to scaling a regular Python web service, we can scale model serving by spawning more processes (to workaround Python's GIL) in a single machine, or even spawning more machine instances.
When we use a GPU to serve the model, though, we need to do more work to scale it. Because of how concurrency is handled differently by a GPU compared to a CPU, in order to maximize the performance, we need to do inference request batching. The idea is when a request comes, instead of immediately processing it, we wait some timeout duration for other requests to come. When the timeout is up, even if the number of requests is only one, we batch them all to be processed on the GPU.
In order to minimize the average request latency, we need to find the optimal timeout duration. To find it we need to observe that there is a trade-off between minimizing the timeout duration and maximizing the number of batch size. If the timeout is too low, the batch size will be small, so the GPU will be underutilized. But if the timeout is too high, the requests that come early will wait too long before they get processed. So, the optimal timeout duration depends on the model complexity (hence, the inference duration) and the average requests per second to receive.
Implementing a scheduler to do request batching is not a trivial task, so instead of doing it manually, we'd better use TensorFlow Serving or PyTorch Serve which already supports it.
To learn more about parallel and distributed learning, you can read this review paper.
As the question is quite broad, I'll try to shed a little different light and touch on different topics than what was shown in
#Daniel's in-depth answer.
Training
Data parallelization vs model parallelization
As mentioned by #Daniel data parallelism is used way more often and is easier to do correctly. Major caveat of model parallelism is the need to wait for part of neural network and synchronization between them.
Say you have a simple feedforward 5 layer neural network spread across 5 different GPUs, each layer for one device. In this case, during each forward pass each device has to wait for computations from the previous layers. In this simplistic case, copying data between devices and synchronization would take a lot longer and won't bring benefits.
On the other hand, there are models better suited for model parallelization like Inception networks, see picture below:
Here you can see 4 independent paths from previous layer which could go in parallel and only 2 synchronization points (Filter concatenation and Previous Layer).
Questions
E.g. backpropagation through the graph itself can be parallelized e.g.
by having different layers hosted on different machines since (I
think?) the autodiff graph is always a DAG.
It's not that easy. Gradients are calculated based on the loss value (usually) and you need to know gradients of deeper layers to calculate gradients for the more shallow ones. As above, if you have independent paths it's easier and may help, but it's way easier on a single device.
I believe this is also called gradient accumulation (?)
No, it's actually reduction across multiple devices. You can see some of that in PyTorch tutorial. Gradient accumulation is when you run your forward pass (either on single or multiple devices) N times and backpropagate (the gradient is kept in the graph and the values are added during each pass) and optimizer only makes a single step to change neural network's weights (and clears the gradient). In this case, loss is usually divided by the number of steps without optimizer. This is used for more reliable gradient estimation, usually when you are unable to use large batches.
Reduction across devices looks like this:
This is all-reduce in data parallelization, each device calculates the values which are send to all other devices and backpropagated there.
When is each strategy better for what type of problem or neural
network?
Described above, data parallel is almost always fine if you have enough of data and the samples are big (up to 8k samples or more can be done at once without very big struggle).
Which modes are supported by modern libraries?
tensorflow and pytorch both support either, most modern and maintained libraries have those functionalities implemented one way or another
can one combine all four (2x2) strategies
Yes, you can parallelize both model and data across and within machines.
synchronous vs asynchronous
asynchronous
Described by #Daniel in brief, but it's worth mentioning updates are not totally separate. That would make little sense, as we would essentially train N different models based on their batches.
Instead, there is a global parameter space, where each replica is supposed to share calculated updates asynchronously (so forward pass, backward, calculate update with optimizer and share this update to global params).
This approach has one problem though: there is no guarantee that when one worker calculated forward pass another worker updated the parameters, so the update is calculated with respect to old set of params and this is called stale gradients. Due to this, convergence might be hurt.
Other approach is to calculate N steps and updates for each worker and synchronize them afterwards, though it's not used as often.
This part was based on great blogpost and you should definitely read it if interested (there is more about staleness and some solutions).
synchronous
Mostly described previously, there are different approaches but PyTorch gathers output from network and backpropagates on them (torch.nn.parallel.DistributedDataParallel)[https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel]. BTW. You should solely this (no torch.nn.DataParallel) as it overcomes Python's GIL problem.
Takeaways
Data parallelization is always almost used when going for speed up as you "only" have to replicate neural network on each device (either over the network or within single machine), run part of batch on each during the forward pass, concatenate them into a single batch (synchronization) on one device and backpropagate on said.
There are multiple ways to do data parallelization, already introduced by #Daniel
Model parallelization is done when the model is too large to fit on single machine (OpenAI's GPT-3 would be an extreme case) or when the architecture is suited for this task, but both are rarely the case AFAIK.
The more and the longer parallel paths the model has (synchronization points), the better it might be suited for model parallelization
It's important to start workers at similar times with similar loads in order not to way for synchronization processes in synchronous approach or not to get stale gradients in asynchronous (though in the latter case it's not enough).
Serving
Small models
As you are after large models I won't delve into options for smaller ones, just a brief mention.
If you want to serve multiple users over the network you need some way to scale your architecture (usually cloud like GCP or AWS). You could do that using Kubernetes and it's PODs or pre-allocate some servers to handle requests, but that approach would be inefficient (small number of users and running servers would generate pointless costs, while large numbers of users may halt the infrastructure and take too long to process resuests).
Other way is to use autoscaling based on serverless approach. Resources will be provided based on each request so it has large scaling abilities + you don't pay when the traffic is low. You can see Azure Functions as they are on the path to improve it for ML/DL tasks, or torchlambda for PyTorch (disclaimer, I'm the author) for smaller models.
Large models
As mentioned previously, you could use Kubernetes with your custom code or ready to use tools.
In the first case, you can spread the model just the same as for training, but only do forward pass. In this way even giant models can be put up on the network (once again, GPT-3 with 175B parameters), but requires a lot of work.
In the second, #Daniel provided two possibilities. Others worth mentioning could be (read respective docs as those have a lot of functionalities):
KubeFlow - multiple frameworks, based on Kubernetes (so auto-scaling, multi-node), training, serving and what not, connects with other things like MLFlow below
AWS SageMaker - training and serving with Python API, supported by Amazon
MLFlow - multiple frameworks, for experiment handling and serving
BentoML - multiple frameworks, training and serving
For PyTorch, you could read more here, while tensorflow has a lot of serving functionality out of the box via Tensorflow EXtended (TFX).
Questions from OP's comment
Are there any forms of parallelism that are better within a machine vs
across machines
The best for of parallelism would probably be within one giant computer as to minimize transfer between devices.
Additionally, there are different backends (at least in PyTorch) one can choose from (mpi, gloo, nccl) and not all of them support direct sending, receiving, reducing etc. data between devices (some may support CPU to CPU, others GPU to GPU). If there is no direct link between devices, those have to be first copied to another device and copied again to target device (e.g. GPU on other machine -> CPU on host -> GPU on host). See pytorch info.
The more data and the bigger network, the more profitable it should be to parallelize computations. If whole dataset can be fit on a single device there is no need for parallelization. Additionally, one should take into account things like internet transfer speed, network reliability etc. Those costs may outweigh benefits.
In general, go for data parallelization if you have lots of of data (say ImageNet with 1.000.000 images) or big samples (say images 2000x2000). If possible, within a single machine as to minimize between-machines transfer. Distribute model only if there is no way around it (e.g. it doesn't fit on GPU). Don't otherwise (there is little to no point to parallelize when training MNIST as the whole dataset will easily fit in RAM and the read will be fastest from it).
why bother build custom ML-specific hardware such as TPUs?
CPUs are not the best suited for highly parallel computations (e.g. matrices multiplication) + CPU may be occupied with many other tasks (like data loading), hence it makes sense to use GPU.
As GPU was created with graphics in mind (so algebraic transformation), it can take some of CPU duties and can be specialized (many more cores when compared to CPU but simpler ones, see V100 for example).
Now, TPUs are tailored specificially for tensor computations (so deep learning mainly) and originated in Google, still WIP when compared to GPUs. Those are suited for certain types of models (mainly convolutional neural networks) and can bring speedups in this case. Additionally one should use the largest batches with this device (see here), best to be divisible by 128. You can compare that to NVidia's Tensor Cores technology (GPU) where you are fine with batches (or layer sizes) divisible by 16 or 8 (float16 precision and int8 respectively) for good utilization (although the more the better and depends on number of cores, exact graphic card and many other stuff, see some guidelines here).
On the other hand, TPUs support still isn't the best, although two major frameworks support it (tensorflow officially, while PyTorch with torch_xla package).
In general, GPU is a good default choice in deep learning right now, TPUs for convolution heavy architectures, though might give some headache tbh. Also (once again thanks #Daniel), TPUs are more power effective, hence should be cheaper when comparing single floating point operation cost.

Does changing a token name in an image caption model affect performance?

If I train an image caption model then stop to rename a few tokens:
Should I train the model from scratch?
Or can I reload the model and continue training from the last epoch with the updated vocabulary?
Will either approach effect model accuracy/performance differently?
I would go for option 2.
When training the model from scratch, you are initializing the model's weights randomly and then you fit them based on your problem. However, if, instead of using random weights, you use weights that have already been trained for a similar problem, you may decrease the convergence time. This option is kind similar to the idea of transfer learning.
Just to give the other team a voice: So what is actually the difference between training from scratch and reloading a model and continuing training?
(2) will converge faster, (1) will probably have a better performance and should thus be chosen. Do we actually care about training times when we trade them off with performance - do you really? See you do not.
The further your model is already converged to a specific problem, the harder it gets to get it back into another optimum. Now you might be lucky and the chance, that you are going down the right rabid hole, rises with similar tasks and similar data. Yet with a change in your setup this can not be guaranteed.
Initializing a few epochs on other than your target domain, definitely makes sense and is beneficial, yet the question arises why you would not train on your target domain from the very beginning.
Note: For a more substantial read I'd like to refer you to this paper, where they explain in more depth why domain is of the essence and transfer learning could mess with your final performance.
It depends on the number of tokens being relabeled compared to the total amount. Just because you mentioned there are few of them, then the optimal solution in my opinion is clear.
You should start the training from scratch but initialize the weights with the values they had from wherever the previous training stopped (again mentioning that it is crucial that the samples that are being re-labeled are not of substantial amount). This way, the model will likely converge faster than starting with random weights and also better than trying to re-fit ("forget") what it managed to learn from the previous training.
Topologically speaking you are initializing in a position where the model is closer to a global minimum but has not made any steps towards a local minimum.
Hope this helps.

Tensorflow inference run time high on first data point, decreases on subsequent data points

I am running inference using one of the models from TensorFlow's object detection module. I'm looping over my test images in the same session and doing sess.run(). However, on profiling these runs, I realize the first run always has a higher time as compared to the subsequent runs.
I found an answer here, as to why that happens, but there was no solution on how to fix.
I'm deploying the object detection inference pipeline on an Intel i7 CPU. The time for one session.run(), for 1,2,3, and the 4th image looks something like (in seconds):
1. 84.7132628
2. 1.495621681
3. 1.505012751
4. 1.501652718
Just a background on what all I have tried:
I tried using the TFRecords approach TensorFlow gave as a sample here. I hoped it would work better because it doesn't use a feed_dict. But since more I/O operations are involved, I'm not sure it'll be ideal. I tried making it work without writing to the disk, but always got some error regarding the encoding of the image.
I tried using the TensorFlow datasets to feed the data, but I wasn't sure how to provide the input, since the during inference I need to provide input for "image tensor" key in the graph. Any ideas on how to use this to provide input to a frozen graph?
Any help will be greatly appreciated!
TLDR: Looking to reduce the run time of inference for the first image - for deployment purposes.
Even though I have seen that the first inference takes longer, the difference (84 Vs 1.5) that is shown there seems to be a bit unbelievable. Are you counting the time to load model also, inside this time metric? Can this could be the difference for the large time difference? Is the topology that complex, so that this time difference could be justified?
My suggestions:
Try Openvino : See if the topology you are working on, is supported in Openvino. OpenVino is known to speed up the inference workloads by a substantial amount due to it's capability to optimize network operations. Also, the time taken to load openvino model, is comparitively lower in most of the cases.
Regarding the TFRecords Approach, could you please share the exact error and at what stage you got the error?
Regarding Tensorflow datasets, could you please check out https://github.com/tensorflow/tensorflow/issues/23523 & https://www.tensorflow.org/guide/datasets. Regarding the "image tensor" key in the graph, I hope, your original inference pipeline should give you some clues.

tf-slim batch norm: different behaviour between training/inference mode

I'm attempting to train a tensorflow model based on the popular slim implementation of mobilenet_v2 and am observing behaviour I cannot explain related (I think) to batch normalization.
Problem Summary
Model performance in inference mode improves initially but starts producing trivial inferences (all near-zeros) after a long period. Good performance continues when run in training mode, even on the evaluation dataset. Evaluation performance is impacted by batch normalization decay/momentum rate... somehow.
More extensive implementation details below, but I'll probably lose most of you with the wall of text, so here are some pictures to get you interested.
The curves below are from a model which I tweaked the bn_decay parameter of while training.
0-370k: bn_decay=0.997 (default)
370k-670k: bn_decay=0.9
670k+: bn_decay=0.5
Loss for (orange) training (in training mode) and (blue) evaluation (in inference mode). Low is good.
Evaluation metric of model on evaluation dataset in inference mode. High is good.
I have attempted to produce a minimal example which demonstrates the issue - classification on MNIST - but have failed (i.e. classification works well and the problem I experience is not exhibited). My apologies for not being able to reduce things further.
Implementation Details
My problem is 2D pose estimation, targeting Gaussians centered at the joint locations. It is essentially the same as semantic segmentation, except rather than using a softmax_cross_entropy_with_logits(labels, logits) I use tf.losses.l2_loss(sigmoid(logits) - gaussian(label_2d_points)) (I use the term "logits" to describe unactivated output of my learned model, though this probably isn't the best term).
Inference Model
After preprocessing my inputs, my logits function is a scoped call to the base mobilenet_v2 followed by a single unactivated convolutional layer to make the number of filters appropriate.
from slim.nets.mobilenet import mobilenet_v2
def get_logtis(image):
with mobilenet_v2.training_scope(
is_training=is_training, bn_decay=bn_decay):
base, _ = mobilenet_v2.mobilenet(image, base_only=True)
logits = tf.layers.conv2d(base, n_joints, 1, 1)
return logits
Training Op
I have experimented with tf.contrib.slim.learning.create_train_op as well as a custom training op:
def get_train_op(optimizer, loss):
global_step = tf.train.get_or_create_global_step()
opt_op = optimizer.minimize(loss, global_step)
update_ops = set(tf.get_collection(tf.GraphKeys.UPDATE_OPS))
update_ops.add(opt_op)
return tf.group(*update_ops)
I'm using tf.train.AdamOptimizer with learning rate=1e-3.
Training Loop
I'm using the tf.estimator.Estimator API for training/evaluation.
Behaviour
Training initially goes well, with an expected sharp increase in performance. This is consistent with my expectations, as the final layer is rapidly trained to interpret the high-level features output by the pretrained base model.
However, after a long period (60k steps with batch_size 8, ~8 hours on a GTX-1070) my model begins to output near-zero values (~1e-11) when run in inference mode, i.e. is_training=False. The exact same model continues to improve when run in *training mode, i.e.is_training=True`, even on the valuation set. I have visually verified this is.
After some experimentation I changed the bn_decay (batch normalization decay/momentum rate) from the default 0.997 to 0.9 at ~370k steps (also tried 0.99, but that didn't make much of a difference) and observed an immdeiate improvement in accuracy. Visual inspection of the inference in inference mode showed clear peaks in the inferred values of order ~1e-1 in the expected places, consistent with the location of peaks from training mode (though values much lower). This is why the accuracy increases significantly, but the loss - while more volative - does not improve much.
These effects dropped off after more training and reverted to all zero inference.
I further dropped the bn_decay to 0.5 at step ~670k. This resulted in improvements to both loss and accuracy. I'll likely have to wait until tomorrow to see the long-term effect.
Loss and an evaluation metric plots given below. Note the evaluation metric is based on the argmax of the logits and high is good. Loss is based on the actual values, and low is good. Orange uses is_training=True on the training set, while blue uses is_training=False on the evaluation set. The loss of around 8 is consistent with all zero outputs.
Other notes
I have also experimented with turning off dropout (i.e. always running the dropout layers with is_training=False), and observed no difference.
I have experimented with all versions of tensorflow from 1.7 to 1.10. No difference.
I have trained models from the pretrained checkpoint using bn_decay=0.99 from the start. Same behaviour as using default bn_decay.
Other experiments with a batch size of 16 result in qualitatively identical behaviour (though I can't evaluate and train simultaneously due to memory constraints, hence quantitatively analysing on batch size of 8).
I have trained different models using the same loss and using tf.layers API and trained from scratch. They have worked fine.
Training from scratch (rather than using pretrained checkpoints) results in similar behaviour, though takes longer.
Summary/my thoughts:
I am confident this is not an overfitting/dataset problem. The model makes sensible inferences on the evaluation set when run with is_training=True, both in terms of location of peaks and magnitude.
I am confident this is not a problem with not running update ops. I haven't used slim before, but apart from the use of arg_scope it doesn't look too much different to the tf.layers API which I've used extensively. I can also inspect the moving average values and observe that they are changing as training progresses.
Chaning bn_decay values significantly effected the results temporarily. I accept that a value of 0.5 is absurdly low, but I'm running out of ideas.
I have tried swapping out slim.layers.conv2d layers for tf.layers.conv2d with momentum=0.997 (i.e. momentum consistent with default decay value) and behaviour was the same.
Minimal example using pretrained weights and Estimator framework worked for classification of MNIST without modification to bn_decay parameter.
I've looked through issues on both the tensorflow and models github repositories but haven't found much apart from this. I'm currently experimenting with a lower learning rate and a simpler optimizer (MomentumOptimizer), but that's more because I'm running out of ideas rather than because I think that's where the problem lies.
Possible Explanations
The best explanation I have is that my model parameters are rapidly cycling in a manner such that the moving statistics are unable to keep up with the batch statistics. I've never heard of such behaviour, and it doesn't explain why the model reverts to poor behaviour after more time, but it's the best explanation I have.
There may be a bug in the moving average code, but it has worked perfectly for me in every other case, including a simple classification task. I don't want to file an issue until I can produce a simpler example.
Anyway, I'm running out of ideas, the debug cycle is long, and I've already spent too much time on this. Happy to provide more details or run experiments on demand. Also happy to post more code, though I'm worried that'll scare more people off.
Thanks in advance.
Both lowering the learning rate to 1e-4 with Adam and using Momentum optimizer (with learning_rate=1e-3 and momentum=0.9) resolved this issue. I also found this post which suggests the problem spans multiple frameworks and is an undocumented pathology of some networks due to the interaction between optimizer and batch-normalization. I do not believe it is a simple case of the optimizer failing to find a suitable minimum due to the learning rate being too high (otherwise performance in training mode would be poor).
I hope that helps others experiencing the same issue, but I'm a long way from satisfied. I'm definitely happy to hear other explanations.

Testing Unsupervised Machine Learning Algorithms

All over the Internet, I can see applications of supervised and unsupervised Machine Learning Algorithms but no one is talking about maintaining the quality of machine learning apps.
The recent analysis on how to test unsupervised machine learning algorithms brought up these points:
1) Cross-validation Testing: Dataset is divided into equal folds(parts) and all folds except the one are used as training dataset and later is used as test dataset Few more options around using test and training dataset.
Are there more effective ways of testing unsupervised ML algorithms where the output is uncertain?
Depending on the type of algorithm (and choosen distance) you used, you can still try to look if the variance between group and the variance within group is changing a lot.
If your algorithm is still as good as when you built it, the variance between and the variance within should not change that much. If the variance between shrink (or the reverse), it mean groups are not as well separated as before by your algorithm.
The second thing you can try is to keep some observations (that you know were well classified) to see if they are still in the same group once you retrained your algorithm. If not, it doesn't mean your algorithm is wrong, but you can send an alert in this case to look deeper.