Java - Difference between javax.crypto.Mac and javax.crypto.Cipher? - cryptography

I would like to understand the difference between javax.crypto.Mac and javax.crypto.Cipher. Those two classes looks very similar (they have similar methods but those two classes do not inherits from each another).
What's the fundamental difference between those two classes ?
When should I use (or not use) Mac ?
When should I use (or not use) Cipher ?

A Message Authentication Code is for integrity. It computes, on some input message, a kind of "keyed checksum" that depends on the message and on the key. With knowledge of the key, the MAC can be verified to match a given message. Alterations are thus reliably detected.
A Symmetric encryption algorithm is for confidentiality. It transforms a message into an unreadable sequence of bits; the encryption is reversible provided that the decryption key is known.
MAC do not ensure confidentiality; the message is kept as is, plainly readable. Encryption does not ensure integrity; alterations may go undetected. In properly applied cryptography, you need both. (But mind that this "properly" term is big.)

Related

Is the example proposed by Microsoft for cryptography secure enough, or should I learn more?

This is the article published by Microsoft for encrypting/decrypting data using RSA:
https://learn.microsoft.com/en-us/dotnet/standard/security/walkthrough-creating-a-cryptographic-application
As a relatively new person into the cryptography world and having read a comment on stackoverflow saying that cryptography should use a hybrid model, I researched that and it seems that hybrid models use AES and RSA for encryption and I was wondering if the example provided by Microsoft fits into the hybrid model since it uses both and if is constructed well enough and not just for novice devs just venturing into the world of cryptography.
I already have a working example where an app would encode and another would decode by loading the private key file, similar to the example.
I found an article here:
https://www.codeproject.com/Tips/834977/Using-RSA-and-AES-for-File-Encryption
He creates signatures and manifests and I'm wondering if this is what I'm looking for is Microsoft's example generally just enough, or weak?
PS: I removed the key container code and persistence as I don't want to persist or store my keys on the local machine, instead they are exported as standalone files to be stored in a DB maybe, so I'm not looking for opinions on that part at the moment.
and not just for novice devs just venturing into the world of cryptography
Well, at least it tries to define some kind of protocol, although very sparse. It also uses CBC mode (implicitly, never a good idea) and RSA with PKCS#1 v1.5 padding for encryption. Most people would opt for OAEP if RSA is used and use an authenticated cipher such as GCM.
I already have a working example where an app would encode and another would decode by loading the private key file, similar to the example.
Bad idea, the example is for file encryption, not for transport mode security, for which you need a secure transport protocol. Both the RSA implementation and CBC implementation are malleable, and are both susceptible to padding oracle attacks as well.
I don't want to persist or store my keys on the local machine
You need to establish trust, something that is missing from the example. And to establish trust you do need to persist your keys, especially if they have been randomly generated.
In the end, asking if something is secure depends on context: you need to know what your goals are and then check if the protocol provides enough protection to achieve these goals.
This is also my problem with these generic examples or wrapper classes; they make no sense to me, as the generic security that they seem to provide may not fit your use case; I'd rather design a protocol specific to the use case.

Authentication tips using NTAG 424 DNA TT

I need to implement an authentication procedure between a reader an NFC tag but being my knowledge limited in this area I will appreciated some aid in order to understand few concepts.
Pardon in advance for rewrite the Bible but I could not summarize it more.
There are many tags families ( ICODE, MIFARE, NTAG...) but after doing a research I think NTAG 424 DNA matches my requirements(I need mainly authentication features).
It comes with AES encryption, CMAC protocol and 3-pass-authentication system and here is when I started to need assistance.
AES -> As I am concerned this is a block cipher to encrypt plain texts via permutations and mapping. Is a symmetric standard and it does not use the master key, instead session keys are used being them derivations from the master key. (Q01: What I do not know is where this keys are stored in the tag. Keys must be stored on specialized HW but no tag "specs" remark this, apart from MIFARE SAM labels.)
CMAC -> It is an alteration of CBC-MAC to make authentication secure for dynamically sized messages. If data is not confidential then MAC can be used on plain-texts to verify them, but to gain confidentiality and authentication features "Encrypt-than-mac" must be pursuit. Here also session keys are used, but not the same keys used in the encryption step.(Q02: The overall view of CMAC may be a protocol to implement verification along with confidentiality, this is my opinion and could be wrong.)
3-pass-protocol -> ISO/IEC 9798-2 norm where tag and reader are mutually verified. It may also use MAC along with session keys to achieve this task.(Q03: I think this is the upper layer of all the system to verify tags and readers. The "3 pass protocol" relays in MAC to be functional and, if confidentiality features are also needed, then CMAC might be used instead of single MAC. CMAC needs AES to be functional, applying session keys on each step. Please correct me if I am posting savages mistakes)
/*********/
P.S: I am aware that this is a coding related forum but surely I can find here someone with more knowledge than me about cryptography to answer this questions.
P.S.S: I totally do not know where master and session keys are kept in the Tag side. Have they need to be include by a separate HW along with the main NFC circuit ?
(Target)
This is to implement a mutual verification process between tag and reader, using the NTAG 424 DNA TagTamper label. (The target is to avoid 3ยบ parties copies, being authentication the predominant part instead of message confidentiality)
Lack of knowledge of cryptography and trying to understand how AES, CMAC and the mutual authentication are used on this NTAG.
(Extra Info)
NTAG 424 DNA TT: https://www.nxp.com/products/identification-security/rfid/nfc-hf/ntag/ntag-for-tags-labels/ntag-424-dna-424-dna-tagtamper-advanced-security-and-privacy-for-trusted-iot-applications:NTAG424DNA
ISO 9798-2: http://bcc.portal.gov.bd/sites/default/files/files/bcc.portal.gov.bd/page/adeaf3e5_cc55_4222_8767_f26bcaec3f70/ISO_IEC_9798-2.pdf
3-pass-authentication:https://prezi.com/p/rk6rhd03jjo5/3-pass-mutual-authentication/
Keys storage HW:https://www.microchip.com/design-centers/security-ics/cryptoauthentication
The NTAG424 chips are not particularly easy to use, but they offer some nice features which can be used for different security applications. However one important thing to note, is that although it heavily relies on encryption, from an implementation side, that is not the main challenge, because all of the aes encryption, cmac computation and so on is already available as some sort of package or library in most programming languages. Some examples are even given by nxp in their application note. For example in python you will be able to use the AES package from Crypto.Cipher import AES as stated in one of the examples of the application note.
My advice is to simply retrace their personalization example beginning at the initial authentication, and then work your way up to whatever you are trying to achieve. It is also possible to use these examples in order to test the encryption and the building of apdu commands. Most of the work is not hard, but sometimes the NXP documents can be a bit confusing.
One small note, if you are working with python, there is some code available on github which you might be able to reuse.
For iOS, I'm working on a library for DNA communication, NfcDnaKit:
https://github.com/johnnyb/nfc-dna-kit

Is RSA-encoded data exchangable

Up to now, I thought that if I have RSA-encrypted data, this data would be easily exchangable between most platforms (.net, java, pc, unix..), because of the commonly used algorithm.
Through investigating for another questions I had, I'm now confused. I have found even between MS-implementations differences (some provider reverse the resulting byte-array). Moreover the padding seems not to follow a standardization.
Can someone with experience in cross platform cryptography give a statement, if RSA-encoded data is relatively simple exchangable (with some obvious pitfalls) or if this is a headache?
Note that RSA encryption is normally not used by itself, but in combination with a symmetric encryption algorithm.
So, to make sure to be interoperable, you need to make sure that:
Both sides use the same padding scheme for RSA (e.g. the one originally defined in PKCS#1 v1.5, or OAEP). (That does not mean that the padding has to be deterministic, just that the decrypter know which bits of the decrypted text was padding and which were the original message).
Both sides use the same format for their messages (e.g. the one in PKCS#7 or its successors).
Both sides use the same symmetric algorithm (e.g. AES-128), mode of operation (e.g. CBC) and block cipher padding scheme (e.g. PKCS#5-padding).
The encrypting party must use the public key corresponding to the private key used by the decrypting party.
The simple answer to your question is no, the cryptographic algorithm itself does not specify how to store or transmit bytes between implementations to ensure interoperability. For that you must use a standard format or protocol that gives these instructions down to the bit level. For example, in Paulo answer he talks about PKCS#7 and PKCS#1. These in turn rely on the DER-encoding rules of ASN.1 that specify exactly how to covert the big integer pieces of RSA into an unambigous sequence of bytes and back again.

How to determine the encryption scheme used when given a cipher text and the key

For a homework assignment, I am asked to determine the algorithm used to generate a given cipher text. The key is also given. Currently, I am working down a list of simple encryption algorithms and semi-blindly testing different decryption arrangements in an attempt at retrieving the given plain text.
Is there a better way to go about this process? I've read pages of Google results on the topic and haven't come across anything that explained a better process than what I'm already doing. Thus far I've run multiple levels of linguistical analysis upon the cipher text and am trying to plug in logical values into the encrypted message to decrypt it.
This is built around basic cryptographic systems, nothing at the level of public key encryption or DES.
Even if I can get the original message, how will that show the encryption scheme that was used?
My answer would be there is nothing wrong with trying various different algorithms out and seeing what works.
Cryptanalysis is like solving a puzzle, not a step by step process. You try things, you see what works, what you think gets you closer. It is absolutely trial and error based on knowledge of the potential algorithms, patterns and techniques and the reasons for them. Differential cryptanalysis, a modern technique, basically amounts to trying various combinations of keys and plaintexts within an algorithm and looking at the differences to see if you can find patterns.
From your comments, I think you're facing a vigenere cipher or some similar variant thereof. In this case, the key is important because essentially a vigenere cipher is a set of caesar ciphers and the length of the key determines the number of these ciphers. Now, the rules of the scheme in question will tell you exactly what cipher it is, but that's the basis of it.

How does password-based encryption technically work?

Say I have some data and a password, and I want to encrypt the data in such a way that it can only be recovered with the right password.
How does this technically work (i.e. how to implement this)? I often hear people use bitshifting for encryption, but how do you base that on a password? How does password-based encryption work?
An example is Mac OS X FileVault
Thanks.
If you give sample code, preferably in C, Objective-C or pseudocode.
For (symmetric) encryption you need a secret key for encryption and decryption.
Usually, the password you supply is used as the source of this key. For various security reasons, the password is not (and often cannot, due to requirements of the cipher used) directly used as the key. Instead, a key derivation function is used to generate the key from the password.
This is why passwords for encryption must be long and fairly random: Otherwise the resulting key will only come from a very small subset of possible keys, and these can then simply all be tried, thus brute-forcing the encryption.
As to code examples, there are several possibilities:
look at the source code of a crypto library, such as OpenSSL
look at the source code of a program that implements encryption, such as GnuPG
google some sample source code for a simple encryption algorithm, or a key derivation function, and try to understand it
This depends on what you want to learn.
You'll need to look to other resources for a deep explanation, as this question is extremely broad.
Speaking generally: you use a password as a "seed" for an encryption key, as sleske pointed out. Then you use this key to apply a two-way encryption algorithm (i.e. one that can be applied once to encrypt and again to decrypt). When you apply the algorithm to a piece of data, it becomes encrypted in such a way that you could never get the data back out again without using the same key, and you can't practically produce the same key without having the same password as a seed.
If you're interested in crypto, read Applied Cryptography by Bruce Schneier. Excellent read, lots of examples. It goes through many different cryptography types.
An easy way, but not exactly secure, is to rotate each byte by a number determined by the password. You can use a hash code from a string, or count the number of characters, or whatever for the number.
What you are probably thinking of, though, is public key encryption. Here is a link to a document that will tell you the math for it - you'll have to work out the implementation details yourself, but it's not that hard once you understand the math.
http://mathaware.org/mam/06/Kaliski.pdf
The basic building block of most block ciphers is a construction called a Feistel Network. It's reasonably easy to understand.
Stream ciphers are even simpler - they're essentially just pseudo-random number generators, albeit with some important security properties, where the initial internal state is derived from the key.
Password based encryption IS symmetric. The input usually consists of a salt in addition to the password. FooBabel has a cool app where you can play around with this... currently they hard code the Salt to an array of eight bytes (zero to seven) for simplicity. I put in a request to see that they let users input the salt. Anyway, here it is - PBECrypto