How to efficiently remove duplicate rows from a DataFrame - pandas

I'm dealing with a very large Data Frame and I'm using pandas to do the analysis.
The data frame is structured as follows
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
Source Target Weight
0 0 25846 1
1 0 1916 1
2 25846 0 1
3 0 4748 1
4 0 16856 1
The issue is that I want to remove all the "duplicates". In the sense that if I already have a row that contains a Source and a Target I do not want this information to be repeated on another row.
For instance, rows number 0 and 2 are "duplicate" in this sense and only one of them should be retained.
A simple way to get rid of all the "duplicates" is
for index, row in df.iterrows():
df = df[~((df.Source==row.Target)&(df.Target==row.Source))]
However, this approach is horribly slow since my data frame has about 3 million rows. Do you think there's a better way of doing this?

Create two temp columns to save minimum(df.Source, df.Target) and maximum(df.Source, df.Target), and then check duplicated rows by duplicated() method:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0, 5, (20, 2)), columns=["Source", "Target"])
df["T1"] = np.minimum(df.Source, df.Target)
df["T2"] = np.maximum(df.Source, df.Target)
df[~df[["T1", "T2"]].duplicated()]

No need (as usual) to use a loop with a dataframe. Use the Series.isin method:
So start with this:
df = pandas.DataFrame({
'src': [0, 0, 25, 0, 0],
'tgt': [25, 12, 0, 85, 363]
})
print(df)
src tgt
0 0 25
1 0 12
2 25 0
3 0 85
4 0 363
Then select all of the where src is not in tgt:
df[~(df['src'].isin(df['tgt']) & df['tgt'].isin(df['src']))]
src tgt
1 0 12
3 0 85
4 0 363

Your Source and Targets appear to be mutually exclusive (i.e. you can have one, but not both). Why not add them together (e.g. 25846 + 0) to get the unique identifier. You can then delete the unneeded Target column (reducing memory), and then drop duplicates. In the event your weights are not the same, it will take the first one by default.
df.Source += df.Target
df.drop('Target', axis=1, inplace=True)
df.drop_duplicates(inplace=True)
>>> df
Source Weight
0 25846 1
1 1916 1
3 4748 1
4 16856 1

Related

Easiest way to ignore or drop one header row from first page, when parsing table spanning several pages

I am parsing a PDF with tabula-py, and I need to ignore the first two tables, but then parse the rest of the tables as one, and export to a CSV. On the first relevant table (index 2) the first row is a header-row, and I want to leave this out of the csv.
See my code below, including my attempt at dropping the relevant row from the Pandas frame.
What is the easiest/most elegant way of achieving this?
tables = tabula.read_pdf('input.pdf', pages='all', multiple_tables=True)
f = open('output.csv', 'w')
# tables[2].drop(index=0) # tried this, but makes no difference
for df in tables[2:]:
df.to_csv(f, index=False, sep=';')
f.close()
Given the following toy dataframes:
import pandas as pd
tables = [
pd.DataFrame([[1, 3], [2, 4]]),
pd.DataFrame([["a", "b"], [1, 3], [2, 4]]),
]
for table in tables:
print(table)
# Ouput
0 1
0 1 3
1 2 4
0 1
0 a b <<< Unwanted row in table[1]
1 1 3
2 2 4
You can drop the first row of the second dataframe either by reassigning the resulting dataframe (preferable way):
tables[1] = tables[1].drop(index=0)
Or inplace:
tables[1].drop(index=0, inplace=True)
And so, in both cases:
print(table[1])
# Output
0 1
1 1 3
2 2 4

How do I assign index values to a level of Multi index Data Frame?

I have a Multi index Data Frame. However, I wanted to change its first level to a certain list of index values. Suppose its first level is initially [2,4,1], I want to change it to [1,2,100]. What is the simplest way to achieve it? My current approach would involve, reset_index, change column values and set index again.
One way is to create a dictionary of the old values to the replacement values, then iterate through the index as tuples replacing the values, and assign the new index back to the DataFrame:
new_vals = {2: 1, 4: 2, 1: 100}
df.index = pd.MultiIndex.from_tuples([(new_vals[tup[0]], tup[1]) for tup in df.index.to_list()])
(This assumes your MultiIndex has only 2 levels, for every additional level that you want to keep you'd need to add tup[2] etc into the list comprehension.)
Use df.reindex()
data.reindex([1,2,100])
Use rename:
Setup
import pandas as pd
index = pd.MultiIndex.from_tuples([(e, i) for i, e in enumerate([2, 4, 1])])
df = pd.DataFrame([1, 2, 3], index=index)
print(df)
Output (of setup)
0
2 0 1
4 1 2
1 2 3
Code
new_index = [1, 2, 100]
new_vals = dict(zip(df.index.levels[0], new_index))
print(df.rename(new_vals, level=0))
Output
0
1 0 1
2 1 2
100 2 3

dataframe slicing with loc [duplicate]

How do I select columns a and b from df, and save them into a new dataframe df1?
index a b c
1 2 3 4
2 3 4 5
Unsuccessful attempt:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
The column names (which are strings) cannot be sliced in the manner you tried.
Here you have a couple of options. If you know from context which variables you want to slice out, you can just return a view of only those columns by passing a list into the __getitem__ syntax (the []'s).
df1 = df[['a', 'b']]
Alternatively, if it matters to index them numerically and not by their name (say your code should automatically do this without knowing the names of the first two columns) then you can do this instead:
df1 = df.iloc[:, 0:2] # Remember that Python does not slice inclusive of the ending index.
Additionally, you should familiarize yourself with the idea of a view into a Pandas object vs. a copy of that object. The first of the above methods will return a new copy in memory of the desired sub-object (the desired slices).
Sometimes, however, there are indexing conventions in Pandas that don't do this and instead give you a new variable that just refers to the same chunk of memory as the sub-object or slice in the original object. This will happen with the second way of indexing, so you can modify it with the .copy() method to get a regular copy. When this happens, changing what you think is the sliced object can sometimes alter the original object. Always good to be on the look out for this.
df1 = df.iloc[0, 0:2].copy() # To avoid the case where changing df1 also changes df
To use iloc, you need to know the column positions (or indices). As the column positions may change, instead of hard-coding indices, you can use iloc along with get_loc function of columns method of dataframe object to obtain column indices.
{df.columns.get_loc(c): c for idx, c in enumerate(df.columns)}
Now you can use this dictionary to access columns through names and using iloc.
As of version 0.11.0, columns can be sliced in the manner you tried using the .loc indexer:
df.loc[:, 'C':'E']
is equivalent to
df[['C', 'D', 'E']] # or df.loc[:, ['C', 'D', 'E']]
and returns columns C through E.
A demo on a randomly generated DataFrame:
import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 6)),
columns=list('ABCDEF'),
index=['R{}'.format(i) for i in range(100)])
df.head()
Out:
A B C D E F
R0 99 78 61 16 73 8
R1 62 27 30 80 7 76
R2 15 53 80 27 44 77
R3 75 65 47 30 84 86
R4 18 9 41 62 1 82
To get the columns from C to E (note that unlike integer slicing, E is included in the columns):
df.loc[:, 'C':'E']
Out:
C D E
R0 61 16 73
R1 30 80 7
R2 80 27 44
R3 47 30 84
R4 41 62 1
R5 5 58 0
...
The same works for selecting rows based on labels. Get the rows R6 to R10 from those columns:
df.loc['R6':'R10', 'C':'E']
Out:
C D E
R6 51 27 31
R7 83 19 18
R8 11 67 65
R9 78 27 29
R10 7 16 94
.loc also accepts a Boolean array so you can select the columns whose corresponding entry in the array is True. For example, df.columns.isin(list('BCD')) returns array([False, True, True, True, False, False], dtype=bool) - True if the column name is in the list ['B', 'C', 'D']; False, otherwise.
df.loc[:, df.columns.isin(list('BCD'))]
Out:
B C D
R0 78 61 16
R1 27 30 80
R2 53 80 27
R3 65 47 30
R4 9 41 62
R5 78 5 58
...
Assuming your column names (df.columns) are ['index','a','b','c'], then the data you want is in the
third and fourth columns. If you don't know their names when your script runs, you can do this
newdf = df[df.columns[2:4]] # Remember, Python is zero-offset! The "third" entry is at slot two.
As EMS points out in his answer, df.ix slices columns a bit more concisely, but the .columns slicing interface might be more natural, because it uses the vanilla one-dimensional Python list indexing/slicing syntax.
Warning: 'index' is a bad name for a DataFrame column. That same label is also used for the real df.index attribute, an Index array. So your column is returned by df['index'] and the real DataFrame index is returned by df.index. An Index is a special kind of Series optimized for lookup of its elements' values. For df.index it's for looking up rows by their label. That df.columns attribute is also a pd.Index array, for looking up columns by their labels.
In the latest version of Pandas there is an easy way to do exactly this. Column names (which are strings) can be sliced in whatever manner you like.
columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)
In [39]: df
Out[39]:
index a b c
0 1 2 3 4
1 2 3 4 5
In [40]: df1 = df[['b', 'c']]
In [41]: df1
Out[41]:
b c
0 3 4
1 4 5
With Pandas,
wit column names
dataframe[['column1','column2']]
to select by iloc and specific columns with index number:
dataframe.iloc[:,[1,2]]
with loc column names can be used like
dataframe.loc[:,['column1','column2']]
You can use the pandas.DataFrame.filter method to either filter or reorder columns like this:
df1 = df.filter(['a', 'b'])
This is also very useful when you are chaining methods.
You could provide a list of columns to be dropped and return back the DataFrame with only the columns needed using the drop() function on a Pandas DataFrame.
Just saying
colsToDrop = ['a']
df.drop(colsToDrop, axis=1)
would return a DataFrame with just the columns b and c.
The drop method is documented here.
I found this method to be very useful:
# iloc[row slicing, column slicing]
surveys_df.iloc [0:3, 1:4]
More details can be found here.
Starting with 0.21.0, using .loc or [] with a list with one or more missing labels is deprecated in favor of .reindex. So, the answer to your question is:
df1 = df.reindex(columns=['b','c'])
In prior versions, using .loc[list-of-labels] would work as long as at least one of the keys was found (otherwise it would raise a KeyError). This behavior is deprecated and now shows a warning message. The recommended alternative is to use .reindex().
Read more at Indexing and Selecting Data.
You can use Pandas.
I create the DataFrame:
import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
index=['Jane', 'Peter','Alex','Ann'],
columns=['Test_1', 'Test_2', 'Test_3'])
The DataFrame:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
To select one or more columns by name:
df[['Test_1', 'Test_3']]
Test_1 Test_3
Jane 1 5
Peter 5 5
Alex 7 8
Ann 7 9
You can also use:
df.Test_2
And you get column Test_2:
Jane 2
Peter 4
Alex 7
Ann 6
You can also select columns and rows from these rows using .loc(). This is called "slicing". Notice that I take from column Test_1 to Test_3:
df.loc[:, 'Test_1':'Test_3']
The "Slice" is:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
And if you just want Peter and Ann from columns Test_1 and Test_3:
df.loc[['Peter', 'Ann'], ['Test_1', 'Test_3']]
You get:
Test_1 Test_3
Peter 5 5
Ann 7 9
If you want to get one element by row index and column name, you can do it just like df['b'][0]. It is as simple as you can imagine.
Or you can use df.ix[0,'b'] - mixed usage of index and label.
Note: Since v0.20, ix has been deprecated in favour of loc / iloc.
df[['a', 'b']] # Select all rows of 'a' and 'b'column
df.loc[0:10, ['a', 'b']] # Index 0 to 10 select column 'a' and 'b'
df.loc[0:10, 'a':'b'] # Index 0 to 10 select column 'a' to 'b'
df.iloc[0:10, 3:5] # Index 0 to 10 and column 3 to 5
df.iloc[3, 3:5] # Index 3 of column 3 to 5
Try to use pandas.DataFrame.get (see the documentation):
import pandas as pd
import numpy as np
dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])
One different and easy approach: iterating rows
Using iterows
df1 = pd.DataFrame() # Creating an empty dataframe
for index,i in df.iterrows():
df1.loc[index, 'A'] = df.loc[index, 'A']
df1.loc[index, 'B'] = df.loc[index, 'B']
df1.head()
The different approaches discussed in the previous answers are based on the assumption that either the user knows column indices to drop or subset on, or the user wishes to subset a dataframe using a range of columns (for instance between 'C' : 'E').
pandas.DataFrame.drop() is certainly an option to subset data based on a list of columns defined by user (though you have to be cautious that you always use copy of dataframe and inplace parameters should not be set to True!!)
Another option is to use pandas.columns.difference(), which does a set difference on column names, and returns an index type of array containing desired columns. Following is the solution:
df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)
The output would be:
b c
1 3 4
2 4 5
You can also use df.pop():
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))
>>> df
name class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal
>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object
>>> df
name max_speed
0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN
Please use df.pop(c).
I've seen several answers on that, but one remained unclear to me. How would you select those columns of interest?
The answer to that is that if you have them gathered in a list, you can just reference the columns using the list.
Example
print(extracted_features.shape)
print(extracted_features)
(63,)
['f000004' 'f000005' 'f000006' 'f000014' 'f000039' 'f000040' 'f000043'
'f000047' 'f000048' 'f000049' 'f000050' 'f000051' 'f000052' 'f000053'
'f000054' 'f000055' 'f000056' 'f000057' 'f000058' 'f000059' 'f000060'
'f000061' 'f000062' 'f000063' 'f000064' 'f000065' 'f000066' 'f000067'
'f000068' 'f000069' 'f000070' 'f000071' 'f000072' 'f000073' 'f000074'
'f000075' 'f000076' 'f000077' 'f000078' 'f000079' 'f000080' 'f000081'
'f000082' 'f000083' 'f000084' 'f000085' 'f000086' 'f000087' 'f000088'
'f000089' 'f000090' 'f000091' 'f000092' 'f000093' 'f000094' 'f000095'
'f000096' 'f000097' 'f000098' 'f000099' 'f000100' 'f000101' 'f000103']
I have the following list/NumPy array extracted_features, specifying 63 columns. The original dataset has 103 columns, and I would like to extract exactly those, then I would use
dataset[extracted_features]
And you will end up with this
This something you would use quite often in machine learning (more specifically, in feature selection). I would like to discuss other ways too, but I think that has already been covered by other Stack Overflower users.
To exclude some columns you can drop them in the column index. For example:
A B C D
0 1 10 100 1000
1 2 20 200 2000
Select all except two:
df[df.columns.drop(['B', 'D'])]
Output:
A C
0 1 100
1 2 200
You can also use the method truncate to select middle columns:
df.truncate(before='B', after='C', axis=1)
Output:
B C
0 10 100
1 20 200
To select multiple columns, extract and view them thereafter: df is the previously named data frame. Then create a new data frame df1, and select the columns A to D which you want to extract and view.
df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1
All required columns will show up!
def get_slize(dataframe, start_row, end_row, start_col, end_col):
assert len(dataframe) > end_row and start_row >= 0
assert len(dataframe.columns) > end_col and start_col >= 0
list_of_indexes = list(dataframe.columns)[start_col:end_col]
ans = dataframe.iloc[start_row:end_row][list_of_indexes]
return ans
Just use this function
I think this is the easiest way to reach your goal.
import pandas as pd
cols = ['a', 'b']
df1 = pd.DataFrame(df, columns=cols)
df1 = df.iloc[:, 0:2]

Division between two numbers in a Dataframe

I am trying to calculate a percent change between 2 numbers in one column when a signal from another column is triggered.
The trigger can be found with np.where() but what I am having trouble with is the percent change. .pct_change does not work because if you .pct_change(-5) you get 16.03/20.35 and I want the number the opposite way 20.35/16.03. See table below. I have tried returning the array from the index in the np.where and adding it to an .iloc from the 'Close' column but it says I can't use that array to get an .iloc position. Can anyone help me solve this problem. Thank you.
IdxNum | Close | Signal (1s)
==============================
0 21.45 0
1 21.41 0
2 21.52 0
3 21.71 0
4 20.8 0
5 20.35 0
6 20.44 0
7 16.99 0
8 17.02 0
9 16.69 0
10 16.03 1<< 26.9% <<< 20.35/16.03-1 (df.Close[5]/df.Close[10]-1)
11 15.67 0
12 15.6 0
You can try this code block:
#Create DataFrame
df = pd.DataFrame({'IdxNum':range(13),
'Close':[21.45,21.41,21.52,21.71,20.8,20.35,20.44,16.99,17.02,16.69,16.03,15.67,15.6],
'Signal':[0] * 13})
df.ix[10,'Signal']=1
#Create a function that calculates the reqd diff
def cal_diff(row):
if(row['Signal']==1):
signal_index = int(row['IdxNum'])
row['diff'] = df.Close[signal_index-5]/df.Close[signal_index]-1
return row
#Create a column and apply that difference
df['diff'] = 0
df = df.apply(lambda x:cal_diff(x),axis=1)
In case you don't have IdxNum column, you can use the index to calculate difference
#Create DataFrame
df = pd.DataFrame({
'Close':[21.45,21.41,21.52,21.71,20.8,20.35,20.44,16.99,17.02,16.69,16.03,15.67,15.6],
'Signal':[0] * 13})
df.ix[10,'Signal']=1
#Calculate the reqd difference
df['diff'] = 0
signal_index = df[df['Signal']==1].index[0]
df.ix[signal_index,'diff'] = df.Close[signal_index-5]/df.Close[signal_index]-1

selection with hierarchical index - getting subset of the dataframe

I have a dataframe which represent a matrix. it is indexed by row number and column number, something like that:
arrays = [[1,1,1,2,2,2,3,3,3],[1,2,3,1,2,3,1,2,3]]
tuples = zip(*arrays)
index = MultiIndex.from_tuples(tuples, names=['row', 'col'])
df = DataFrame([100,99,98,97,96,95,94,93,92],index,columns=['score'])
score
row col
1 1 100
2 99
3 98
2 1 97
2 96
3 95
3 1 94
2 93
3 92
Now I'm trying to figure out how to select only cols 1 and 3 of row 1, meaning some code that will return:
score
row col
1 1 100
3 98
of course Im not looking for a code that explicitly selects 1 and 3, but rather the more general case, in which i will pass a list of level 0 indices and a list of level 1 indices, and will get back the appropriate subset.
I've tried:
k1 = 1
k2 = [1,3]
df.ix[k1,k2]
Which raise an error.
This does works:
df.ix[k1].ix[k2]
But only if k1 is scalar. if k1=[1,3] the proper subset is not retrieved, because the return dataframe is still indexed with level 0 index.
It deosnt look like what the author intended.. I see no reason why df.ix[k1,k2] (where k1 and k2 are scalars or vectors or a mix) shouldn't work. Am I missing something?
how about reindex()?
df.reindex([1,2], level=0).reindex([1,3], level=1)
For a more general solution, here is a similar question I answered before:
How to index into a pandas multindex with ix
I copy the code here:
import numpy as np
def ms(df, *args):
idx = df.index
for i, values in enumerate(args):
if values is not None:
if np.isscalar(values):
values = [values]
idx = idx.reindex(values, level=i)[0]
return df.ix[idx]
ms(df, [1,2], [1, 3])
But I think unstack() the matrix is better:
m = df.score.unstack()
m.loc[[1,2],[1,3]]