I'm working on integrating an experiment in psychopy with the eyelink eyetracking system. The way to do this seems to be through pylink. Unfortunately I'm really unfamiliar with pylink and I was hoping there was a sample of an experiment that combines the two. I haven't been able to find one. If anyone would be able to share an example or point me towards a more accessible manual than the pylink api that sr-research provides I'd be really grateful.
Thanks!
I am glad you found your solution. I have not used iohub, but we do use psychopy and an eyelink and therefore some of the following code may be of use to others who wish to invoke more direct communication. Note that our computers use Archlinux. If none of the following makes any sense to you, don't worry about it, but maybe it will help others who are stumbling along the same path we are.
Communication between experimental machine and eye tracker machine
First, you have to establish communication with the eyelink. If your experimental machine is turned on and plugged into a live Eyelink computer then on linux you have to first set your ethernet card up, and then set the default address that Eyelink uses (this also works for the Eyelink 1000 - they kept the same address). Note your ethernet will probably have a different name than enp4s0. Try simply with ip link and look for something similar. NB: these commands are being typed into a terminal.
#To set up connection with Eyelink II computer:
#ip link set enp4s0 up
#ip addr add 100.1.1.2/24 dev enp4s0
Eyetracker functions
We have found it convenient to write some functions for talking to the Eyelink computer. For example:
Initialize Eyetracker
sp refers to the tuple of screenx, screeny sizes.
def eyeTrkInit (sp):
el = pl.EyeLink()
el.sendCommand("screen_pixel_coords = 0 0 %d %d" %sp)
el.sendMessage("DISPLAY_COORDS 0 0 %d %d" %sp)
el.sendCommand("select_parser_configuration 0")
el.sendCommand("scene_camera_gazemap = NO")
el.sendCommand("pupil_size_diameter = %s"%("YES"))
return(el)
NB: the pl function comes from import pylink as pl. Also, note that there is another python library called pylink that you can find on line. It is probably not the one you want. Go through the Eyelink forum and get pylink from there. It is old, but it still works.
Calibrate Eyetracker
el is the name of the eyetracker object initialized above. sp screen size, and cd is color depth, e.g. 32.
def eyeTrkCalib (el,sp,cd):
pl.openGraphics(sp,cd)
pl.setCalibrationColors((255,255,255),(0,0,0))
pl.setTargetSize(int(sp[0]/70), int(sp[1]/300))
pl.setCalibrationSounds("","","")
pl.setDriftCorrectSounds("","off","off")
el.doTrackerSetup()
pl.closeGraphics()
#el.setOfflineMode()
Open datafile
You can talk to the eye tracker and do things like opening a file
def eyeTrkOpenEDF (dfn,el):
el.openDataFile(dfn + '.EDF')
Drift correction
Or drift correct
def driftCor(el,sp,cd):
blockLabel=psychopy.visual.TextStim(expWin,text="Press the space bar to begin drift correction",pos=[0,0], color="white", bold=True,alignHoriz="center",height=0.5)
notdone=True
while notdone:
blockLabel.draw()
expWin.flip()
if keyState[key.SPACE] == True:
eyeTrkCalib(el,sp,cd)
expWin.winHandle.activate()
keyState[key.SPACE] = False
notdone=False
Sending and getting messages.
There are a number of built-in variables you can set, or you can add your own. Here is an example of sending a message from your python program to the eyelink
eyelink.sendMessage("TRIALID "+str(trialnum))
eyelink.startRecording(1,1,1,1)
eyelink.sendMessage("FIX1")
tFix1On=expClock.getTime()
Gaze contingent programming
Here is a portion of some code that uses the eyelink's most recent sample in the logic of the experimental program.
while notdone:
if recalib==True:
dict['recalib']=True
eyelink.sendMessage("RECALIB END")
eyelink.startRecording(1,1,1,1)
recalib=False
eventType=eyelink.getNextData()
if eventType==pl.STARTFIX or eventType==pl.FIXUPDATE or eventType==pl.ENDFIX:
sample=eyelink.getNewestSample()
if sample != None:
if sample.isRightSample():
gazePos = sample.getRightEye().getGaze()
if sample.isLeftSample():
gazePos = sample.getLeftEye().getGaze()
gazePosCorFix = [gazePos[0]-scrx/2,-(gazePos[1]-scry/2)]
posPix = posToPix(fixation)
eucDistFix = sqrt((gazePosCorFix[0]-posPix[0])**2+(gazePosCorFix[1]-posPix[1])**2)
if eucDistFix < tolFix:
core.wait(timeFix1)
notdone=False
eyelink.resetData()
break
Happy Hacking.
rather than PyLink, you might want to look into using the ioHub system within PsychoPy. This is a more general-purpose eye tracking system that also allows for saving data in a common format (integrated with PsychoPy events), and provides tools for data analysis and visualisation.
ioHUb is built to be agnostic to the particular eye tracker you are using. You just need to create a configuration file specific to your EyeLink system, and thereafter use the generic functions ioHiv provides for calibration, accessing gaze data in real-time, and so on.
There are some teaching resources accessible here: http://www.psychopy.org/resources/ECEM_Python_materials.zip
For future readers, I wanted to share my library for combining pylink and psychopy. I've recently updated it to work with python 3. It provides simple to use, high level functions.
https://github.com/colinquirk/templateexperiments/tree/master/eyelinker
You could also work at a lower level with the PsychoPyCustomDisplay class (see the pylink docs for more info about EyeLinkCustomDisplay).
For an example of it in use, see:
https://github.com/colinquirk/ChangeDetectionEyeTracking
(At the time of writing, this experiment code is not yet python 3 ready, but it should still be a useful example.)
The repo also includes other modules for creating experiments and recording EEG data, but they are not necessary if you are just interested in the eyelinker code.
Related
Is there a way to make the logged user (on superset) to make the queries on impala?
I tried to enable the "Impersonate the logged on user" option on Databases but with no success because all the queries run on impala with superset user.
I'm trying to achieve the same! This will not completely answer this question since it does not still work but I want to share my research in order to maybe help another soul that is trying to use this instrument outside very basic use cases.
I went deep in the code and I found out that impersonation is not implemented for Impala. So you cannot achieve this from the UI. I found out this PR https://github.com/apache/superset/pull/4699 that for whatever reason was never merged into the codebase and tried to copy&paste code in my Superset version (1.1.0) but it didn't work. Adding some logs I can see that the configuration with the impersonation is updated, but then the actual Impala query is with the user I used to start the process.
As you can imagine, I am a complete noob at this. However I found out that the impersonation thing happens when you create a cursor and there is a constructor parameter in which you can pass the impersonation configuration.
I managed to correctly (at least to my understanding) implement impersonation for the SQL lab part.
In the sql_lab.py class you have to add in the execute_sql_statements method the following lines
with closing(engine.raw_connection()) as conn:
# closing the connection closes the cursor as well
cursor = conn.cursor(**database.cursor_kwargs)
where cursor_kwargs is defined in db_engine_specs/impala.py as the following
#classmethod
def get_configuration_for_impersonation(cls, uri, impersonate_user, username):
logger.info(
'Passing Impala execution_options.cursor_configuration for impersonation')
return {'execution_options': {
'cursor_configuration': {'impala.doas.user': username}}}
#classmethod
def get_cursor_configuration_for_impersonation(cls, uri, impersonate_user,
username):
logger.debug('Passing Impala cursor configuration for impersonation')
return {'configuration': {'impala.doas.user': username}}
Finally, in models/core.py you have to add the following bit in the get_sqla_engine def
params = extra.get("engine_params", {}) # that was already there just for you to find out the line
self.cursor_kwargs = self.db_engine_spec.get_cursor_configuration_for_impersonation(
str(url), self.impersonate_user, effective_username) # this is the line I added
...
params.update(self.get_encrypted_extra()) # already there
#new stuff
configuration = {}
configuration.update(
self.db_engine_spec.get_configuration_for_impersonation(
str(url),
self.impersonate_user,
effective_username))
if configuration:
params.update(configuration)
As you can see I just shamelessy pasted the code from the PR. However this kind of works only for the SQL lab as I already said. For the dashboards there is an entirely different way of querying Impala that I did not still find out.
This means that queries for the dashboards are handled in a different way and there isn't something like this
with closing(engine.raw_connection()) as conn:
# closing the connection closes the cursor as well
cursor = conn.cursor(**database.cursor_kwargs)
My gut (and debugging) feeling is that you need to first understand the sqlalchemy part and extend a new ImpalaEngine class that uses a custom cursor with the impersonation conf. Or something like that, however it is not simple (if we want to call this simple) as the sql_lab part. So, the trick is to find out where the query is executed and create a cursor with the impersonation configuration. Easy, isnt'it ?
I hope that this could shed some light to you and the others that have this issue. Let me know if you did find out another way to solve this issue, or if this comment was useful.
Update: something really useful
A colleague of mine succesfully implemented impersonation with impala without touching any superset related, but instead working directly with the impyla lib. A PR was open with the code to change. You can apply the patch directly in the impyla src used by superset. You have to edit both dbapi.py and hiveserver2.py.
As a reminder: we are still testing this and we do not know if it works with different accounts using the same superset instance.
In package development, each example requires <5s. However, the pair of stan_model() and rstan::sampling() take long times more than 5s as follows:
Examples with CPU or elapsed time > 5s
user system elapsed
fit 1.25 0.11 32.47
So I put \donttest{} for each rstan::sampling() in roxygen comments #'#examples
In examples#'#examples, we should not run sampling() or is there any treatment ?
I had tried to create my package based on the code rstan_package_skeleton(path = 'BayesianAAA') when I was taught from you (Thank you !!) but, I do not understand many things about it.
Previously, rstan_package_skeleton(path = 'BayesianAAA') launched the errors in my computer ( but now the error does not occur).
So, I made my package without the rstan_package_skeleton(), say BayesianAAA, and in my original making, I put the Model_A.stan,Model_B.stan,Model_C.stan,.... in the inst/extdata and I refer my stan files as follows;
scr <- system.file("extdata", "Model_A.stan", package="BayesianAAA")
scr <- rstan::stan_model(scr)
I have many questions about the code rstan_package_skeleton(path = 'BayesianAAA').
1) The first question is How to include my existing stan files and how to refer my .stan files for the rstan::stan_model() ?
According to the page following page, it said that
If we had existing .stan files to include with the package we could use the optional stan_files argument to rstan_package_skeleton to include them.
So, I think I should execute, I am not sure but the following like manner is required;
`rstan_package_skeleton(path = 'BayesianAAA', stan_files = "Model_A.stan" )`.
But I do not know how to write the code for several stan files, say Model_A.stan,Model_B.stan,Model_C.stan in my existing package made without the rstan_package_skeleton(). I do not understand , but the following code is correct ? Since I do not where the files described in the variable stan_files is reflected in the new project created by the rstan_package_skeleton().
`rstan_package_skeleton(path = 'BayesianAAA', stan_files = c("Model_A.stan",`Model_B.stan`,`Model_C.stan` )`.
Here, the another question arise, that is,
2) The second question: Where I execute the code rstan_package_skeleton(path = 'BayesianAAA', stan_files = "Model_A.stan" ) ? I execute it form the R studio console in my existing package project. Is it correct ? And then, the new project arise and it is contained the old existing project. What should I do ?
https://cran.r-project.org/web/packages/rstantools/vignettes/minimal-rstan-package.html
3) I do not quite know about the packages "rstanarm" , but I try to imitate it for my package, but I can not fined any .stan file in it, I am wrong ?
I am sorry for my poor English, and Lack of study about these things.
I would be grateful if you could tell me.
You generally should not be writing a package that calls stan_model at runtime, unless like brms or tmbstan you are generating a Stan program at runtime as opposed to writing it statically. There are dozens of packages on CRAN that provide compiled Stan programs basically by following the build process developed for rstanarm, which is facilitated by the rstantools::rstan_package.skeleton function, the step-by-step guide, and the developer guidelines which directly address your question
CRAN policy permits long installation times but imposes restrictions on the time consumed by examples and unit tests that are much shorter than the time that it takes to compile even a simple Stan program. Thus, it is only possible to adequately test your package if it has pre-compiled Stan programs.
Even then, it can be difficult to sample from a posterior distribution (adequately) in five seconds, so you often have to use small datasets, one chain, a small number of iterations, etc.
It is best to pass the names of your Stan programs (which should end in a .stan extension, not use a period otherwise, and only have ASCII letters, numbers, and the underscore in their names) to rstantools::rstan_package_skeleton(). If doing so from RStudio, I would call it while not in an existing project. Then
During installation, all Stan programs will be compiled and saved in the list stanmodels that can then be used by R function in the package. The rule is that the Stan program compiled from the model code in src/stan_files/foo.stan is stored as list element stanmodels$foo.
There are dozens of R packages that have Stan programs in their src/stan_files directory (although the locations of the Stan programs are going to move to inst/stan for the next rstantools release) that for the most part just followed the vignettes and did not have to do any additional steps except write more R functions.
I'm writing a ZeroBrane Studio plugin for our Solarus Game Engine and It works like a charm. Autocompletion included.
I'm wondering now if it's do-able to register lua APIs for one file only.
I need this to offer autocompletion/documentation on global symbols that may vary per-script but are deducible from annex files from the engine.
To summary : Is it possible to register an api for a single file? For example in the onEditorLoad() event.
Thanks.
Greg
EDIT:
I tried the following without sucess:
local function switch_editor(editor)
if current_editor == editor then
ide:Print("same editor")
return
end
current_editor = editor
if not editor then
ide:Print("null ed")
return
end
lua_file_path = ide:GetDocument(editor).filePath
if lua_file_path:match('/data/maps/') then
ide:Print("map file!",type(editor))
local map_api = make_map_api(lua_file_path)
current_api = map_api
ide:AddAPI('lua','solarus_map',map_api)
else
ide:Print('other file')
if current_api then
ide:RemoveAPI('lua','solarus_map')
current_api = nil
end
end
end
api = {"baselib", "solarus", "solarus_map"}, --in interpreter table
... -- in the plugin table :
onEditorFocusSet = function(self,editor)
switch_editor(editor)
end,
Completion with the solarus api works fine but the on-fly registration of the solarus_map api seem not to be taken in account.
EDIT2:
Silly my, I must have done a typo, because after checking and rewriting some things pretty much as in the code pasted above... it works! Awesome!
The only small gotcha is that when switching to a file where I don't want the solarus_map API... ide:RemoveAPI isn't sufficient. Instead I must do ide:AddAPI('lua','solarus_map',{}) to replace the API with an empty one. Which I can live with.
To summary, to achieve a custom api which change from file to file:
Add the api name to the interpreter
In the onEditorFocusSet event, update the API with ide:AddAPI(...), eventually setting it to {} if it needs to be empty/disabled.
Code sample in the editions of my Question.
I need to write to a non-VSAM dataset in the mainframe. I know that we need to use the ZFile library to do it and I found how to do it here
I am running my Java batch job in the WebSphere Liberty on zOS. How do I specify the dataset? Can I directly give the DataSet a name like this?
dsnFile = new ZFile("X.Y.Z", "wb,type=record,noseek");
I am able to write it to a text file on the server itself using Java's File Writers but I don't know how to access a mvs dataset.
I am relatively new to the world of zOS and mainframe.
It sounds like you might be asking more generally how to use the ZFile API on WebSphere Liberty on z/OS.
Have you tried something like:
String pdsName = ZFile.getSlashSlashQuotedDSN("X.Y.Z");
ZFile zfile = new ZFile(pdsName , ...options...)
As far as batch-specific use cases, you might obviously have to differentiate between writing to a new file that's created for the first time on an original execution, as opposed to appending to an already-existing one on a restart.
You also might find some useful snipopets in this doctorbatch.io repo, along with the original link you posted.
For reference, I'll copy/paste from the ZFile Javadoc:
ZFile dd = new ZFile("//DD:MYDD", "r");
Opens the DD namee MYDD for reading
ZFile dsn = new ZFile("//'SYS1.HELP(ACCOUNT)'", "rt");
Opens the member ACCOUNT from the PDS SYS1.HELP for reading text records
ZFile dsn = new ZFile("//SEQ", "wb,type=record,recfm=fb,lrecl=80,noseek");
Opens the data set {MVS_USER}.SEQ for sequential binary writing. Note that ",noseek" should be specified with "type=record" if access is sequential, since performance is greatly improved.
One final note, another couple useful ZFile helper methods are: bpxwdyn() and getFullyQualifiedDSN().
I've used the following command to generate a topic model from some documents:
bin/mallet train-topics --input topic-input.mallet --num-topics 100 --output-state topic-state.gz
I have not, however, used the --output-model option to generate a serialized topic trainer object. Is there any way I can use the state file to infer topics for new documents? Training is slow, and it'll take a couple of days for me to retrain, if I have to create the serialized model from scratch.
We did not use the command line tools shipped with mallet, we just use the mallet api to create the serialized model for inferences of the new document. Two point need special notice:
You need serialize out the pipes you used just after you finish the training (For my case, it is SerialPipes)
And of cause the model need also to be serialized after you finish the training(For my case, it is ParallelTopicModel)
Please check with the java doc:
http://mallet.cs.umass.edu/api/cc/mallet/pipe/SerialPipes.html
http://mallet.cs.umass.edu/api/cc/mallet/topics/ParallelTopicModel.html
Restoring a model from the state file appears to be a new feature in mallet 2.0.7 according to the release notes.
Ability to restore models from gzipped "state" files. From the new
TopicTrainer, use the --input-state [filename] argument. Note that you
can manually edit this file. Any token with topic set to -1 will be
immediately resampled upon loading.
If you mean you want to see how new documents fit into a previously trained topic model, then I'm afraid there is no simple command you can use to do it right.
The class cc.mallet.topics.LDA in mallet 2.0.7's source code provides such a utility, try to understand it and use it in your program.
P.S., If my memory serves, there is some problem with the implementation of the function in that class:
public void addDocuments(InstanceList additionalDocuments,
int numIterations, int showTopicsInterval,
int outputModelInterval, String outputModelFilename,
Randoms r)
You have to rewrite it.