how to do physics for space war? - physics

I am trying to do a basic version of space war(http://en.wikipedia.org/wiki/Spacewar_%28video_game%29) but I cannot figure out how to do the inertia part
that is my code :
I should let the ship accelerate or slow down based on where it faces
model is the ship
vx and vy are velocity of x and y direction
theta are rotate degree
20 is for make it move slow
vx=model.vx+(cos (degrees model.theta))/20,
vy=model.vy+(sin (degrees model.theta))/20
but it does not seem right
Can someone help me?
I am horrible in physics!

A very accurate and efficient integration is to compute: PosNext = 2 * PosCurrent - PosPrevious + Acceleration*Timestep^2
It is called Verlet integration scheme. For Velocities you just update by: VelocityNext = (PosNext-PosCurrent)/TimeStep.
You can use your sine and cosine with the acceleration constant. Euler forward is not very accurate, try to avoid it.

Related

Initial velocity vector for circular orbit

I'm trying to create a solar system simulation, and I'm having problems trying to figure out initial velocity vectors for random objects I've placed into the simulation.
Assume:
- I'm using Gaussian grav constant, so all my units are AU/Solar Masses/Day
- Using x,y,z for coordinates
- One star, which is fixed at 0,0,0. Quasi-random mass is determined for it
- I place a planet, at a random x,y,z coordinate, and its own quasi-random mass determined.
Before I start the nbody loop (using RK4), I would like the initial velocity of the planet to be such that it has a circular orbit around the star. Other placed planets will, of course, pull on it once the simulation starts, but I want to give it the chance to have a stable orbit...
So, in the end, I need to have an initial velocity vector (x,y,z) for the planet that means it would have a circular orbit around the star after 1 timestep.
Help? I've been beating my head against this for weeks and I don't believe I have any reasonable solution yet...
It is quite simple if you assume that the mass of the star M is much bigger than the total mass of all planets sum(m[i]). This simplifies the problem as it allows you to pin the star to the centre of the coordinate system. Also it is much easier to assume that the motion of all planets is coplanar, which further reduces the dimensionality of the problem to 2D.
First determine the magnitude of the circular orbit velocity given the magnitude of the radius vector r[i] (the radius of the orbit). It only depends on the mass of the star, because of the above mentioned assumption: v[i] = sqrt(mu / r[i]), where mu is the standard gravitational parameter of the star, mu = G * M.
Pick a random orbital phase parameter phi[i] by sampling uniformly from [0, 2*pi). Then the initial position of the planet in Cartesian coordinates is:x[i] = r[i] * cos(phi[i]) y[i] = r[i] * sin(phi[i])
With circular orbits the velocity vector is always perpendicular to the radial vector, i.e. its direction is phi[i] +/- pi/2 (+pi/2 for counter-clockwise (CCW) rotation and -pi/2 for clockwise rotation). Let's take CCW rotation as an example. The Cartesian coordinates of the planet's velocity are:vx[i] = v[i] * cos(phi[i] + pi/2) = -v[i] * sin(phi[i])vy[i] = v[i] * sin(phi[i] + pi/2) = v[i] * cos(phi[i])
This easily extends to coplanar 3D motion by adding z[i] = 0 and vz[i] = 0, but it makes no sense, since there are no forces in the Z direction and hence z[i] and vz[i] would forever stay equal to 0 (i.e. you will be solving for a 2D subspace problem of the full 3D space).
With full 3D simulation where each planet moves in a randomly inclined initial orbit, one can work that way:
This step is equal to step 1 from the 2D case.
You need to pick an initial position on the surface of the unit sphere. See here for examples on how to do that in a uniformly random fashion. Then scale the unit sphere coordinates by the magnitude of r[i].
In the 3D case, instead of two possible perpendicular vectors, there is a whole tangential plane where the planet velocity lies. The tangential plane has its normal vector collinear to the radius vector and dot(r[i], v[i]) = 0 = x[i]*vx[i] + y[i]*vy[i] + z[i]*vz[i]. One could pick any vector that is perpendicular to r[i], for example e1[i] = (-y[i], x[i], 0). This results in a null vector at the poles, so there one could pick e1[i] = (0, -z[i], y[i]) instead. Then another perpendicular vector can be found by taking the cross product of r[i] and e1[i]:e2[i] = r[i] x e1[i] = (r[2]*e1[3]-r[3]*e1[2], r[3]*e1[1]-r[1]*e1[3], r[1]*e1[2]-r[2]*e1[1]). Now e1[i] and e2[i] can be normalised by dividing them by their norms:n1[i] = e1[i] / ||e1[i]||n2[i] = e2[i] / ||e2[i]||where ||a|| = sqrt(dot(a, a)) = sqrt(a.x^2 + a.y^2 + a.z^2). Now that you have an orthogonal vector basis in the tangential plane, you can pick one random angle omega in [0, 2*pi) and compute the velocity vector as v[i] = cos(omega) * n1[i] + sin(omega) * n2[i], or as Cartesian components:vx[i] = cos(omega) * n1[i].x + sin(omega) * n2[i].xvy[i] = cos(omega) * n1[i].y + sin(omega) * n2[i].yvz[i] = cos(omega) * n1[i].z + sin(omega) * n2[i].z.
Note that by construction the basis in step 3 depends on the radius vector, but this does not matter since a random direction (omega) is added.
As to the choice of units, in simulation science we always tend to keep things in natural units, i.e. units where all computed quantities are dimensionless and kept in [0, 1] or at least within 1-2 orders of magnitude and so the full resolution of the limited floating-point representation could be used. If you take the star mass to be in units of Solar mass, distances to be in AUs and time to be in years, then for an Earth-like planet at 1 AU around a Sun-like star, the magnitude of the orbital velocity would be 2*pi (AU/yr) and the magnitude of the radius vector would be 1 (AU).
Just let centripetal acceleration equal gravitational acceleration.
m1v2 / r = G m1m2 / r2
v = sqrt( G m2 / r )
Of course the star mass m2 must be much greater than the planet mass m1 or you don't really have a one-body problem.
Units are a pain in the butt when setting up physics problems. I've spent days resolving errors in seconds vs timestep units. Your choice of AU/Solar Masses/Day is utterly insane. Fix that before anything else.
And, keep in mind that computers have inherently limited precision. An nbody simulation accumulates integration error, so after a million or a billion steps you will certainly not have a circle, regardless of the step duration. I don't know much about that math, but I think stable n-body systems keep themselves stable by resonances which absorb minor variations, whether introduced by nearby stars or by the FPU. So the setup might work fine for a stable, 5-body problem but still fail for a 1-body problem.
As Ed suggested, I would use the mks units, rather than some other set of units.
For the initial velocity, I would agree with part of what Ed said, but I would use the vector form of the centripetal acceleration:
m1v2/r r(hat) = G m1 m2 / r2 r(hat)
Set z to 0, and convert from polar coordinates to cartesian coordinates (x,y). Then, you can assign either y or x an initial velocity, and compute what the other variable is to satisfy the circular orbit criteria. This should give you an initial (Vx,Vy) that you can start your nbody problem from. There should also be quite a bit of literature out there on numerical recipes for nbody central force problems.

Physics - Projectile get launch angle to hit desired location?

I am programming a simple ball projectile in a game.
the update pretty much looks like:
velocity += gravity;
velocity *=0.9;
pos += vel;
Is there a way to set the angle and power of the launch in order to hit a point that is specified with the mouse?
like peggle, http://youtu.be/4KbNiWsgJck?t=45s
I know there is a solution that I have used several years ago, but I can't find it.
I believed it turned my update into a quadratic formula, or derived it or something.
It had two solutions that was solved with the quadratic equation.
ps- hopefully this could be in 3D, but I could use a 2D solution too because my curve would be 2D
any help?
thanks,
Dan
Yes, you can do this. If you can change the angle and speed, you have more variability than you need, so you have to find a reasonable set of parameters that will work, which isn't hard. The basic equations are:
x = x0 + t*v0x
y = y0 + v0yt + (1/2)ayt2
Here, x and y will be the points you want to hit, and t will be the time that you hit them. t won't show up in the final solution, but you'll use it as in intermediary to calculate the values you want.
Basically, then, pick a reasonable value for v0x. Using the x-equation, find what t will be when the target is hit. Then plug this value into the y-equation, and solve for v0y. This then will give you a pair of values of v0x and v0y that will work to hit the target.

where can I find detailed resource on object state prediction for using with dead reckoning?

I have a server and a client.
I have 40 opengl cubes. There state is described by 3d vector for position and 3x3 rotation matrix(or a quaternion).
How can I send intermediate packets and predict the object state on the client between those packets(extrapolation)?
for object position I can use a linear predictor on velocity.
How to predict quaternion states?
The easiest thing, parallel to what you're doing with linear velocity, is to use a linear predictor on angular velocity.
If you have two quaternions, q_0 and q_t, representing global orientations that are t seconds apart, you can compute the finite difference between the two quaternions and use that to find an angular velocity that can be used for extrapolation.
Make sure that the inner-product between q_0 and q_t is non-negative. If it's negative, negate all the components of one of the quaternions. This makes sure that we're not trying to go the long way around. If your bodies are rotating really fast relative to your sampling, this is a problem and you'll need a more complicated model that accounts for the previous angular velocity and makes assumptions about maximum possible acceleration. We'll assume that's not the case.
Then we compute the relative difference quaternion. dq = q_t * q_0' (where q_0' is the quaternion rotational inverse/conjugate). If you have the luxury of having fixed-sized steps, you can stop here and predict then next orientation t seconds into the future: q_2t = dq*d_t.
If we can' step forward by integer multiples of t, we compute the angle of rotation from dq. Quaternions and angular velocities are both variations on "axis-angle" representations of changes in orientation. If you rotate by Θ around unit-length axis [x,y,z], then the quaternion representation of that is q = [cos(Θ/2), sin(Θ/2)x, sin(Θ/2)y, sin(Θ/2)z] (using the quaternion convention where the w component comes first). If you rotate by Θ/t around axis [x,y,z], then the angular velocity is v = [Θx,Θy,Θz]/t. So v = Θ[q.x,q.y,q.z]/(t||[q.x,q.y,q.z]||). We can compute the angle two ways: Θ = 2acos(q.w) = 2asin(||[q.x,q.y,q.z]||). These will always be the same because of step 1. Numerics make it nicer to use sine since we need to find m = ||[q.x,q.y,q.z]|| anyway for the next step.
If m is large enough, then we just find the angular velocity:
v = 2asin(m)[dq.x,dq.y,dq.z]/(m*t)
However, if m's not large enough, we'll face numeric issues trying to divide by near-zero. So programmers will use the Taylor expansion of the sinc() function around zero, which happens to be very accurate in this case. Remember that m = sin(Θ/2). With m<1e-4, we can accurately compute asin(m)/m = 6/(6-m*m). Then you just need to multiply the result by 2*[dq.x,dq.y,dq.z]/t and you have your angular velocity. Phew.
Extrapolating is then a matter of multiplying your angular velocity times the time that has passed. Then you go backwards, converting the angular change to a quaternion and multiplying it onto q_t.
It seems like there must be an easier way...

Vertical circular motion : time(x/y) versus velocity equation

I wanted to simulate the following through animation :
A ball starts with a certain velocity at the bottom most point of
a vertical circular loop and keeps rolling in it until its velocity permits.
For this, I wanted to find velocity/x/y vs. time equation.
For e.g. if the ball had mass : 5Kg, radius of the circular loop = 10m,
and initial velocity of the ball is 200 m/s, what will its velocity and (x,y) position
be after 5 seconds?
thanks.
Sliding, frictionless case with a point-particle ball
In this case we aren't worrying about rotational energy and are assuming that the ball is actually a point particle. Then, in order for the ball to stay on at the top, the centripetal force condition has to be satisfied:
m * v_top^2 / r = m * g
so
v_top = sqrt(r * g)
So the minimum initial velocity is determined by:
1 / 2 * m * v0^2 >= 1 / 2 * m * v_top^2 + m * g * 2 * r
v0 >= sqrt(5 * r * g)
This is similar to what Pete said, except that he forgot the centripetal force condition to stay on at the top.
Next, the acceleration tangential to the track is given by:
a = - g * sin(theta)
but a = r * alpha = r * d^2(theta)/dt^2 where alpha is the rotational acceleration. Thus, we get
r * d^2(theta)/dt^2 = g * sin(theta)
However, I don't know of an analytical solution to this differential equation and Mathematica was stumbling with finding one too. You can't just move the dts to the other side and integrate because theta is a function of t. I would recommend solving it by numerical means such as a Runga-Kutte or maybe the Verlet method. I solved it using Mathematica for the parameters you gave, but with the ball moving so quickly, it doesn't really slow down much in going around. When I lowered the initial velocity though, I was able to see the speeding up and slowing down by plotting theta as a function of time.
Adding in other things like a finite ball radius, rotational energy and friction are certainly doable, but I would worry about being able to solve this first case before moving on because it only gets more complicated from here. By the way, with the friction you will have to choose some kinetic coefficient of friction for your given materials which will of course be proportional to the normal force exerted on the ball by the track which can be solved for by summing the force components along the radius of the circle and don't forget to include the centripetal force condition.
If you haven't done this sort of physics before, I definitely recommend getting a introductory good book on physics (with calculus) and working through it. You only need to bother with the sections that apply to mechanics though that is a very large section of the book probably. There might be better routes to pursue though like some of the resources in this question.
If there are no acceleration (x,y) =(xstart+ vx*time ,ystart + vy*time) and speed remain the same, and it is not related to the radius
Since the velocity is constant you will have an angular velocity of omega = vel / radius. You will obtain how many radians you ball will move per second over its circular path.
To get the position at time t you just have to exploit polar coordinates:
x = x_center + sin( 3/2*PI + omega*t)*radius
y = y_center + cos( 3/2*PI + omega*t)*radius
This because you start from bottom point of the circle (so its 3/2*PI) plus how many radiants you move every second (we obtained it from tangential velocity). All multiplied for the radius, otherwise you will consider a unity circle.
EDIT: Since you wonder how to find a position of an object that is subject to many different forces I can tell you that usually a physical engine doesn't care about finding equations of moving objects. It just applies forces to objects considering their intended motions (like your circular one) or environmental factors (like gravity or friction) and calculates coordinates step by step by applying forces and using an integrator to see the results.
Ignoring friction, the forces on the ball are gravity and the track.
First, there are two main cases - is the velocity enough for the ball to loop-the-loop or not:
initial energy = 1/2 m v² = 0.5 * 5 * 200 * 200
potential energy = m g h = 5 * 9.8 * 20
so it will go round the whole loop.
Initially the ball is at the bottom of the loop, theta = 0
The acceleration on the ball is the component of g along the track
a = g⋅sin theta
The distance travelled is theta * radius. It is also the double integral of acceleration against time.
theta ⋅ radius = double integral of acceleration against time
Integrating acceleration once gives velocity, integrating velocity gives distance.
so solve this for t:
theta ⋅ r = ∫(∫ g⋅sin theta.dt).dt
then your x and y are trivial functions of theta.
Whether you solve it analytically or numerically is up to you.
With dynamic friction, friction is usually proportional to the normal force on the bodies. So this will equal the centripetal force - proportional to the square of the angular velocity, and the component of gravity normal to the track (g sin theta)
You didn't tell anything about how you want your velocity to change. Do you have any friction model? If there is no friction, then the formulas are simple:
length = velocity*t
x = sin(length)*radius
y = -cos(length)*radius
If the velocity is changing, then you have to change length to something like
length = integral over dt[0..t] (velocity dt)
The only thing I wanted to add is the if this is real ball (sphere) with mass 5kg then it must have a diameter dia=(6*m/(PI*rho))^(1/3) where rho is the density of the material. For steel (rho=7680) the diameter is dia=0.1075 meters. Therefore the pitch radius (radius at which the center of gravity of the ball rides on) is equal to R=10-(dia/2) or R=9.9466 meters.
The problem gets a little more complex when friction is included. For one you have to consider the direction of friction (assuming dry friction theory). That depends on the amount the ball rotates in its axis and that depends on moment of inertia of the ball.
When you do the simulation you might want to monitor the total kinetic energy + the total potential energy and make sure your are not adding energy to the system (or taking away). [Don't forget to include the rotational component for the kinetic energy]
Get a standard book on dynamics, and I am sure a similar problem is already described in the book.I would recommend "Vector Mechanic for Engineers - Dynamics".

Question about rotation around center of object using CBasicAnimation

I am trying to spin a wheel on its axis -- setting it in motion using the mouse. Specifically, I am trying to spin a roulette wheel.
I calculate a delta x and delta y by getting the difference of x1 x2 and y1 y2. I can see in console via NSLOG msgs that it is ok. I use these values to calculate velocity.
CABasicAnimation *fullRotation;
fullRotation = [CABasicAnimation animationWithKeyPath:#"transform.rotation"];
fullRotation.fromValue = [ NSNumber numberWithFloat:0 ] ;
fullRotation.toValue = [NSNumber numberWithFloat:(((360*M_PI)/180)) ;
fullRotation.duration = duration ;
fullRotation.repeatCount = repeat ;
[myview.layer addAnimation:fullRotation forKey:#"360"];
The above code gives me fluid animation, but the wheel always completes a full circle, which would be not very realistic.
Can anyone suggest a method for spinning the wheel by smaller amounts that still gives fluid animation? When I use the above, the wheel doesn't move at all for smaller amounts.
Thank you!
Piesia
It sounds like you need a little physics modeling to get the right action on the wheel. I'm not familiar with the APIs and I don't see where the code takes into account the velocity imparted by the finger movement, but I will dust off my physics lessons from 20 years ago with the hope it will help.
The initial velocity of the wheel is going to be determined by the motion of the finger at the time of release. We know that the linear velocity of the wheel at some point will be equal to the angular velocity multiplied by the radius to the point where we're measuring the velocity.
linear velocity = angular velocity * radius
As the wheel spins, it's going to encounter friction from the spindle against the wheel and this will cause it to slow down. Friction is a force applied over time until the wheel comes to a stop.
Friction = Moment of Inertia of the Wheel * angular acceleration
or
Friction / Moment of Inertia of the Wheel = angular acceleration
For the purposes of your application this will be a constant and you'll probably want to experiment with different values for this until it "feels right."
To calculate the amount of time, solve the following equation for time:
0 = angular velocity + angular acceleration * time
Angular acceleration will be negative because you're slowing down. Once you have the amount of time, you're going to calculate the number of revolutions by the following:
revolutions = ((angular velocity * time) + (0.5 * angular acceleration * time^2)) / (2 * pi)
time^2 is time squared, or time * time.
I hope this helps.