DunglasApiBundle - Trying to get the bundle to use Named Constructors rather than public constructor - api

I'm using the Dunglas api-platform bundle (https://github.com/api-platform/api-platform) for a new app.
Setup and installation went fine, GET requests are working.
While trying to create new objects using POST requests, I received errors about having a private constructor. My models are all made using a private constructor, and using named constructors instead.
Ideally i'm either looking for a way to have the bundle call my Named constructors, ... or someone to tell me my approach is completely wrong.
Services.yml
services:
resource.player:
parent: "api.resource"
arguments: [ "Name\\Space\\Player" ]
tags: [ { name: "api.resource" } ]
Player Object
class Player
{
private $name;
private function __construct()
{
}
public static function withName($playerName)
{
$player = new Player();
$player->name = $playerName;
return $player;
}
public function getName()
{
return $this->name;
}
}
Settings are pretty much all out of the box, following the introduction and setup in the documentation. I've skimmed through the Factory thing briefly - hoping that i'd be able to use a factory to create the objects, allowing me to call my own named constructors - but that doesn't seem to do what i think it does.
Any input regarding the use, boundaries or the setup is well appreciated.

API Platform (like most Symfony and Doctrine related libraries) is not designed to work with immutable objects like this one.
I suggest to create a typical mutable Entity as suggested in the doc:
class Player
{
private $name;
public static function setName($playerName)
{
$this->name = $playerName;
}
public function getName()
{
return $this->name;
}
}
If you really want to keep your immutable model, you'll need to implement yourself the Symfony\Component\PropertyAccess\PropertyAccessorInterface and use a CompilerPass to make API Platform using your own implementation. You will probably need to submit a patch to API Platform and to the Symfony Serializer Component to update the reference of the given object too because currently, both serializers actually update the current object and will not use the new instance returned by your with method.
I strongly encourage you to switch to typical mutable entities.

Related

Google Guice runtime dependency injection

I am looking for a way to dynamically select the correct dependency during runtime using google guice.
My usecase is a kotlin application which can work with either sqlite or h2 databases depending on the configuration file provided.
The file is read when the application is executed and if the database is not found, the correct one is created and migrated into.
My database structure contains the Database (Interface), H2Database: Database, SQLiteDatabase: Database and the module binding class which looks like this:
class DatabaseModule: KotlinModule() {
override fun configure() {
bind<Database>().annotatedWith<configuration.H2>().to<H2Database>()
bind<Database>().annotatedWith<configuration.SQLite>().to<SQLiteDatabase>()
}
}
So far, with SQlite alone, I would simply request the dependency using:
#Inject
#SQLite
private lateinit var database: Database
How would I make this selection during runtime?
Without knowing too much about the specific of your code, I'll offer three general approaches.
(Also, I have never used Kotlin. I hope Java samples are enough for you to figure things out.)
First Approach
It sounds like you need some non-trivial logic to determine which Database implementation is the right one to use. This is a classic case for a ProviderBinding. Instead binding Database to a specific implementation, you bind Database to a class that is responsible providing instances (a Provider). For example, you might have this class:
public class MyDatabaseProvider.class implements Provider<Database> {
#Inject
public MyDatabaseProvider.class(Provider<SQLiteDatabase> sqliteProvider, Provider<H2Database> h2Provider) {
this.sqliteProvider = sqliteProvider;
this.h2Provider = h2Provider;
}
public Database get() {
// Logic to determine database type goes here
if (isUsingSqlite) {
return sqliteProvider.get();
} else if (isUsingH2) {
return h2Provider.get();
} else {
throw new ProvisionException("Could not determine correct database implementation.");
}
}
}
(Side note: This sample code gets you a new instance every time. It is fairly straightforward to make this also return a singleton instance.)
Then, to use it, you have two options. In your module, you would bind Database not to a specific implementation, but to your DatabaseProvider. Like this:
protected void configure() {
bind(Database.class).toProvider(MyDatabaseProvider.class);
}
The advantage of this approach is that you don't need to know the correct database implementation until Guice tries to construct an object that requires Database as one of its constructor args.
Second Approach
You could create a DatabaseRoutingProxy class which implements Database and then delegates to the correct database implementation. (I've used this pattern professionally. I don't think there's an "official" name for this design pattern, but you can find a discussion here.) This approach is based on lazy loading with Provider using the Providers that Guice automatically creates(1) for every bound type.
public class DatabaseRoutingProxy implements Database {
private Provider<SqliteDatabse> sqliteDatabaseProvider;
private Provider<H2Database> h2DatabaseProvider;
#Inject
public DatabaseRoutingProxy(Provider<SqliteDatabse> sqliteDatabaseProvider, Provider<H2Database> h2DatabaseProvider) {
this.sqliteDatabaseProvider = sqliteDatabaseProvider;
this.h2DatabaseProvider = h2DatabaseProvider;
}
// Not an overriden method
private Database getDatabase() {
boolean isSqlite = // ... decision logic, or maintain a decision state somewhere
// If these providers don't return singletons, then you should probably write some code
// to call the provider once and save the result for future use.
if (isSqlite) {
return sqliteDatabaseProvider.get();
} else {
return h2DatabaseProvider.get();
}
}
#Override
public QueryResult queryDatabase(QueryInput queryInput) {
return getDatabase().queryDatabase(queryInput);
}
// Implement rest of methods here, delegating as above
}
And in your Guice module:
protected void configure() {
bind(Database.class).to(DatabaseRoutingProxy.class);
// Bind these just so that Guice knows about them. (This might not actually be necessary.)
bind(SqliteDatabase.class);
bind(H2Database.class);
}
The advantage of this approach is that you don't need to be able to know which database implementation to use until you actually make a database call.
Both of these approaches have been assuming that you cannot instantiate an instance of H2Database or SqliteDatabase unless the backing database file actually exists. If it's possible to instantiate the object without the backing database file, then your code becomes much simpler. (Just have a router/proxy/delegator/whatever that takes the actual Database instances as the constructor args.)
Third Approach
This approach is completely different then the last two. It seems to me like your code is actually dealing with two questions:
Does a database actually exist? (If not, then make one.)
Which database exists? (And get the correct class to interact with it.)
If you can solve question 1 before even creating the guice injector that needs to know the answer to question 2, then you don't need to do anything complicated. You can just have a database module like this:
public class MyDatabaseModule extends AbstractModule {
public enum DatabaseType {
SQLITE,
H2
}
private DatabaseType databaseType;
public MyDatabaseModule(DatabaseType databaseType) {
this.databaseType = databaseType;
}
protected void configure() {
if (SQLITE.equals(databaseType)) {
bind(Database.class).to(SqliteDatabase.class);
} else if (H2.equals(databaseType)) {
bind(Database.class).to(H2Database.class);
}
}
}
Since you've separated out questions 1 & 2, when you create the injector that will use the MyDatabaseModule, you can pass in the appropriate value for the constructor argument.
Notes
The Injector documentation states that there will exist a Provider<T> for every binding T. I have successfully created bindings without creating the corresponding provider, therefore Guice must be automatically creating a Provider for configured bindings. (Edit: I found more documentation that states this more clearly.)

Access to container of Simple Injector MVC views

In a Sitecore project I've integrated Simple Injector using this article
It uses sitecore pipelines and then uses a method in App_start
namespace BBC.App_Start
{
public class SimpleInjector : IPackage
{
public void RegisterServices(Container container)
{
GetContainer.RegisterServices(container);
container.Register(() => new SitecoreContext(), Lifestyle.Scoped);
container.Register(() => new Container(), Lifestyle.Singleton);
}
}
}
Simply I can inject container into controller constructor but can't have container in View files.
I tried to declare a static property in App-start and save container to it. but still I'm getting no registration type in Views
What is the best way to have container object in views?
As Stephen suggests in his comment, the literal answer to your question is "you shouldn't do that - because it's not really the way MVC and DI are supposed to work". The more detailed answer goes something like this:
The job of your view is to present data that it has been passed via the Model. Views should not really contain logic. Very simple stuff like "if flag is false, hide this block of mark-up" is ok, but the more complex code to work out what the value of the flag is shouldn't be in the view.
MVC tries to make our website code better by encouraging you to separate presentation (the View) from data (the Model) and logic (the Controller). This should make our code easier to work with - So if you have processing that needs doing, then it should really be happening when your controller method runs.
If your view requires some special data, best practice suggests it should work it out in the controller method and pass it to the view in the model. The code might look more like this:
public class MyModel
{
public string SpecialData { get; set; }
}
public class MyController : Controller
{
public ActionResult DoSomething()
{
// do whatever processing is needed
var somethingCalculate = resultFromYourOtherObject();
// do other stuff
var model = new MyModel() { SpecialData = somethingCalculated };
return View(model);
}
}
And then the View just needs to accept the MyModel class as its model, and render the SpecialData property - no logic required.
I think also it's considered a bad idea to have calls to fetch objects from your DI container spread about your codebase. For MVC apps, generally your DI container gets wired in to the process of creating a controller for a request when the app starts up. Rather than passing about a DI Container into your controllers, the DI framework extends the Controller-creation process, and the container isn't exposed outside of this. When the MVC runtime needs to create a controller, the controller-creation logic uses the DI framework to fetch objects for all the controller's dependencies.
Without more detail about what you actually want to achieve, it's difficult to say what the "right" approach to creating your object(s) here is, but the two most common patterns are probably:
1) Constructor injection: Your controller has a parameter which accepts the object required. The DI container creates this object for you at the point where it creates the controller, so your controller gets all its dependencies when it is created. Good for: scenarios where you know how to create the object at the beginning of the request.
public interface IMySpecialObject
{
string DoSomething();
}
public class MyController : Controller
{
private IMySpecialObject _specialObject;
public MyController(IMySpecialObject specialObject)
{
_specialObject = specialObject;
}
public ActionResult RenderAView()
{
// do some stuff
var data = _specialObject.DoSomething();
return View(data);
}
}
As long as IMySpecialObject and a concrete implementation for it are registered with your DI container when your app starts up, all is well.
2) Factory classes: Sometimes, however, the object in question might be optional, or it might require data that's not available at controller-creation time to create it. In that case, your DI framework could pass in a Factory object to your controller, and this is used to do the construction of the special object later.
public interface ISpecialFactory
{
ISpecialObject CreateSpecialObject(object data);
}
public class MyController : Controller
{
private IMySpecialFactory _specialFactory;
public MyController(IMySpecialFactory specialFactory)
{
_specialFactory = specialFactory;
}
public ActionResult RenderAView()
{
// do some stuff
if( requireSpecialObject )
{
var data = getSomeData();
var specialObject = _specialFactory.CreateSpecialObject(data);
var data = _specialObject.DoSomething();
return View(data);
}
return View("someOtherView");
}
}
But a good book on using DI may suggest other approaches that fit your specific problem better.

JavaFX Wrap an Existing Object with Simple Properties

I am writing a new app and I have chosen to use Java for flexibility. It is a GUI app so I will use JavaFX. This is my first time using Java but I have experience with C#.
I am getting familiar with JavaFX Properties, they look like a great way of bi-directional binding between front-end and back-end.
My code uses classes from an open-source API, and I would like to convert the members of these classes to JavaFX Properties (String => StringProperty, etc). I believe this would be transparent to any objects that refer to these members.
Is it ok to do this?
Is it the suggested way of dealing with existing classes?
What do I do about Enum types? E.g. an enum member has it's value changed, how should I connect the enum member to the front-end?
Thank you :)
In general, as long as you don't change the public API of the class - in other words you don't remove any public methods, modify their parameter types or return types, or change their functionality - you should not break any code that uses them.
So, e.g. a change from
public class Foo {
private String bar ;
public String getBar() {
return bar ;
}
public void setBar(String bar) {
this.bar = bar ;
}
}
to
public class Foo {
private final StringProperty bar = new SimpleStringProperty();
public StringProperty barProperty() {
return bar ;
}
public String getBar() {
return barProperty().get();
}
public void setBar(String bar) {
barProperty().set(bar);
}
}
should not break any clients of the class Foo. The only possible problem is that classes that have subclassed Foo and overridden getBar() and/or setBar(...) might get unexpected behavior if their superclass is replaced with the new implementation (specifically, if getBar() and setBar(...) are not final, you have no way to enforce that getBar()==barProperty().get(), which is desirable).
For enums (and other objects) you can use an ObjectProperty<>:
Given
public enum Option { FIRST_CHOICE, SECOND_CHOICE, THIRD_CHOICE }
Then you can do
public class Foo {
private final ObjectProperty<Option> option = new SimpleObjectProperty<>();
public ObjectProperty<Option> optionProperty() {
return option ;
}
public Option getOption() {
return optionProperty().get();
}
public void setOption(Option choice) {
optionProperty().set(choice);
}
}
One caveat to all this is that you do introduce a dependency on the JavaFX API that wasn't previously present in these classes. JavaFX ships with the Oracle JDK, but it is not a full part of the JSE (e.g. it is not included in OpenJDK by default, and not included in some other JSE implementations). So in practice, you're highly unlikely to be able to persuade the developers of the open source library to accept your changes to the classes in the library. Since it's open source, you can of course maintain your own fork of the library with JavaFX properties, but then it will get tricky if you want to incorporate new versions of that library (you will need to merge two different sets of changes, essentially).
Another option is to use bound properties in the classes, and wrap them using a Java Bean Property Adapter. This is described in this question.

NInject: Create instances per user/session on convention binding

In summary:
I've undefined of unknowed IProducerPlugin implementations on several assemblies located on a plugins folder.
I've a Core object stores a list of current registered users.
Core is Composition Root.
So, I need:
To create as many IProducerPlugin inherited class objects as the number of registered users.
When a new user is un/registered I need to create / release these objects.
In order to register my "plugins":
this.Kernel.Bind(b => b.FromAssembliesMatching("*")
.SelectAllClasses()
.InheritedFrom(typeof(Extensibility.IProducerPlugin))
.BindAllInterfaces());
I'm not quite figuring out how to implement this.
Could you help me please?
I'll appreciate a LOT your help.
DI containers in general and Ninject in special are not suitable to add and remove new bindings to the container during runtime. Some, like Autofac, don't even allow adding bindings once the container is created.
Ninject allows adding new bindings at any time, but you cannot, ever, remove them (*from some use cases there's Rebind, but that's not the same).
kernel.Release(object) is not removing the binding, it's only removing all references to the object that it holds.
For example:
var foo = new object();
kernel.Bind<object>().ToConstant(foo);
to allow garbage collecting of foo you can do one of the following:
kernel.Release(foo);
kernel.Dispose(); kernel = null;
and exactly this is what kernel.Release(...) is for. Maybe you could also Release a singleton and thus force ninject to create a new one on the next request. But i don't know whether this really works, and if it does, it certainly is quite an unexpected hack.
So what you should do is manage the list/dictionary yourself. You can bind and inject the list/dictionary/manager what ever you call it using ninject, but you cannot have ninject manager the list itself.
I've managed to do something like that similar using this a IBindingGenerator interface method...
I've used .BindWith<>() binding method...
this.Kernel.Bind(b => b.FromAssembliesMatching("*")
.SelectAllClasses()
.InheritedFrom(typeof(Extensibility.IProducerPlugin))
.BindWith<PluginBindingGenerator<Extensibility.IProducerPlugin>>()
);
I've implemented a IBindingGenerator:
public class PluginBindingGenerator<T> : IBindingGenerator
{
public System.Collections.Generic.IEnumerable<Ninject.Syntax.IBindingWhenInNamedWithOrOnSyntax<object>> CreateBindings(Type type, Ninject.Syntax.IBindingRoot bindingRoot)
{
if (type != null && !type.IsAbstract && type.IsClass && typeof(T).IsAssignableFrom(type))
{
Ninject.Syntax.IBindingWhenInNamedWithOrOnSyntax<object> syntax = bindingRoot.Bind(typeof(Extensibility.IProducerPlugin)).ToProvider(new PluginProvider());
yield return (Ninject.Syntax.IBindingWhenInNamedWithOrOnSyntax<object>)syntax;
}
}
}
public class PluginProvider : IProvider<object>
{
private System.Collections.Generic.Dictionary<Domain.Identity.ClientIdentity, Extensibility.IProducerPlugin> plugins;
And then, the provider:
public PluginProvider()
{
this.plugins = new System.Collections.Generic.Dictionary<Domain.Identity.ClientIdentity, Extensibility.IProducerPlugin>();
}
public object Create(IContext ctx)
{
//... I don't know what to do here...
return objects;
}
public Type Type
{
get { throw new NotImplementedException(); }
}
}

WCF - Return object without serializing?

One of my WCF functions returns an object that has a member variable of a type from another library that is beyond my control. I cannot decorate that library's classes. In fact, I cannot even use DataContractSurrogate because the library's classes have private member variables that are essential to operation (i.e. if I return the object without those private member variables, the public properties throw exceptions).
If I say that interoperability for this particular method is not needed (at least until the owners of this library can revise to make their objects serializable), is it possible for me to use WCF to return this object such that it can at least be consumed by a .NET client?
How do I go about doing that?
Update: I am adding pseudo code below...
// My code, I have control
[DataContract]
public class MyObject
{
private TheirObject theirObject;
[DataMember]
public int SomeNumber
{
get { return theirObject.SomeNumber; } // public property exposed
private set { }
}
}
// Their code, I have no control
public class TheirObject
{
private TheirOtherObject theirOtherObject;
public int SomeNumber
{
get { return theirOtherObject.SomeOtherProperty; }
set { // ... }
}
}
I've tried adding DataMember to my instance of their object, making it public, using a DataContractSurrogate, and even manually streaming the object. In all cases, I get some error that eventually leads back to their object not being explicitly serializable.
Sure, write a wrapper class that has all of the same public properties available and simply put "get { return internalObject.ThisProperty; }. Decorate the wrapper class so that it works with WCF.
Another option is to write a Proxy class which mirrors the properties of the type you wish to use exactly, and return that via WCF.
You can use AutoMapper to populate the proxy object.
This approach has the advantage that your service's consumers don't need to take a dependency on the third party library in trying to use it.