Kotlin Factory on Inner Nested Class - kotlin

I am trying to create a nested inner class in Kotlin with a companion object factory method (the equivalent of a static factory method in Java). Here's a simplified version of my code.
class OuterClass {
var myData:List<MyData> = List<>() //gets populated elsewhere
fun getItemFragment(position:Int) : Fragment() {
return InnerClass.Factory.newInstance(position)
}
inner class InnerClass : Fragment() {
companion object Factory {
fun newInstance(position:Int) : InnerClass {
var ic : InnerClass = InnerClass()
var bundle:Bundle = Bundle()
bundle.putInt("index", position)
ic.arguments = bundle
return ic
}
}
override fun onCreateView(inflater:LayoutInflater, container: ViewGroup, savedInstanceState:Bundle): View? {
//create and return view, omitted. Need access to myData
}
}
The compilier highlights "companion", saying "Modifier companion is not applicable inside inner class" and it also highlights the InnerClass() call, saying "Expression is inaccessible from a nested class Factory", use "inner" keyword to make the class inner.
How can I achieve what I'm trying to do here with the equivalent of a static factory method in Java?

You can have:
class OuterClass {
fun getItemFragment(position: Int): Fragment {
return InnerClass.Factory.newInstance(position)
}
class InnerClass : Fragment() {
companion object Factory {
fun newInstance(position: Int): InnerClass {
var ic: InnerClass = InnerClass()
return ic
}
}
}
}
However the following will not compile in Kotlin:
class Parent {
inner class Nested {
companion object Factory {
}
}
}
For the same reasons the following will not compile in Java:
public class Parent {
public class Nested {
public static boolean create(){
return false;
}
}
}
The culprit here is that nested inner classes in Kotlin, as well as nested non static classes in Java have an implicit reference to parent class instance. Since Kotlin aims to be highly interoperable with Java it follows the same rule.
Please see following questions for more in-depth explanation:
Why does Java prohibit static fields in inner classes?
Why can't we have static method in a (non-static) inner class?
up vote

Related

Kotlin: use generic on interface level as argument type for function

Is it impossible to use generic on interface level as argument type for function?
I read about out and in keywords but as I understand they don't work for this case.
interface BaseB
open class ChildB1: BaseB
open class ChildB2: BaseB
abstract class BaseMapper<V: BaseB> {
open fun test(v: V) {
return
}
}
class TestMapper1: BaseMapper<ChildB1>() {
override fun test(v: ChildB1) {
return
}
}
class TestMapper2: BaseMapper<ChildB2>() {
override fun test(v: ChildB2) {
return
}
}
#Test
fun t() {
//ERROR
val mappers: List<BaseMapper<BaseB>> = listOf(TestMapper1(), TestMapper2())
mappers[0].test(ChildB1())
}
A BaseMapper<ChildB1> is not logically a BaseMapper<BaseB>. It consumes ChildB’s, so if you passed some other implementation of Base it would cause a ClassCastException if the compiler let you do that. There is no common subtype of your two subclasses besides Nothing, so the only way to put both of these types in the same list is to make it a List<BaseMapper<in Nothing>>.
Example of why it is not logically a BaseMapper<BaseB>:
open class ChildB1: BaseB {
fun sayHello() = println("Hello world")
}
class TestMapper1: BaseMapper<ChildB1>() {
override fun test(v: ChildB1) {
v.sayHello() // if v is not a ChildB1, this would be impossible
}
}
//...
val impossibleCast: BaseMapper<BaseB> = TestMapper1()
// TestMapper1 cannot call sayHello() because it's undefined for ChildB2.
// This is impossible:
impossibleCast.test(ChildB2())
// ...so the compiler prevents you from doing the impossible cast in the first place.

How to access class constructor parameters in a companion object

I would like to access the arguments passed to the class constructor in a companion object :
class Home(private val activity: String) {
companion object {
fun doSomething() {
println(activity)
}
}
}
fun main() {
Home("Hello World").doSomething()
However, an error is raised when I run this code saying that activity is unresolved reference
A companion object is basically the equivalent of a Java static nested class (and that's how it's implemented under the hood), which means an instance of the static nested class could exist even with no instance of the outer class.
Example:
class Outer(private val activity: String) {
companion object {
fun doSomething() {
println("Hello, world!")
}
}
}
fun main() {
Outer.doSomething() // no new Outer instance here
}
If you want a non-static nested class (aka inner class) you can then reference properties of the outer class from within the inner class. That's because instances of the inner class are tied to instances of the outer class.
Example:
class Outer(private val activity: String) {
inner class Inner {
fun doSomething() {
println(activity)
}
}
}
fun main() {
Outer("Hello, world!").Inner().doSomething()
}
For more info, you can also have a look at Java documentation about nested (aka static) and inner (aka non-static) classes here: https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Clean way to access outer class by the implementing delegate class

I was thinking about such case (accessing outer class which uses current class to implement some stuff):
interface Does {
fun doStuff()
}
class ReallyDoes: Does {
var whoShouldReallyDo: Does? = null
override fun doStuff() {
println("Doing stuff instead of $whoShouldReallyDo")
}
}
class MakesOtherDo private constructor(other: Does, hax: Int = 42): Does by other {
constructor(other: ReallyDoes): this(other.also { it.whoShouldReallyDo = this }, 42)
}
fun main(args: Array<String>) {
val worker = ReallyDoes()
val boss = MakesOtherDo(other = worker)
boss.doStuff()
}
Expected output:
Doing stuff instead of MakesOtherDo#28a418fc
But can't do that, because of error:
Error:(15, 79) Cannot access '' before superclass constructor
has been called
Which targets this statement: other.also { it.whoShouldReallyDo = this }
How can I (if at all) fix above implementation?
The reason for the error is other.also { ... = this } expression accesses this of type MakeOtherDo and is also used as argument to MakeOtherDo constructor. Hence, this will be accessed as part of MakeOtherDo (unary) constructor before this has been initialized as an instance of Does (super)class.
Since the assignment does not affect the initialization of the super class, you can executed it in the constructor of MakesOtherDo after the super class has been initialized.
class MakesOtherDo private constructor(other: Does, hax: Int = 42): Does by other {
constructor(other: ReallyDoes): this(other, 42) {
other.also { it.whoShouldReallyDo = this }
}
}
It took me a few minutes to decipher what you were doing above, and really the problem has nothing to do with delegates. You can simplify it down to this:
class Wrapper(var any: Any? = null)
class Test(val wrapper: Wrapper) {
constructor(): this(Wrapper(this)) // Cannot access "<this>" before superclass constructor has been called
}
The concept of "this" doesn't exist yet when we're still generating arguments for its constructor. You just need to move the assignment into the block of the constructor, which is code that's run after this becomes available:
class Test(val wrapper: Wrapper) {
constructor(): this(Wrapper()){
wrapper.any = this
}
}
Or in the case of your example:
constructor(other: ReallyDoes): this(other, 42){
other.whoShouldReallyDo = this
}

Get companion class in companion object

Is there a way to get the javaClass of the companion class inside a companion object without knowing it's name?
I suppose I could get it by doing something like this:
open class TestClass {
companion object {
init {
val clazz = Class.forName(this::class.java.canonicalName.removeSuffix(".Companion"))
}
}
}
However, this does not work for class InheritingClass : TestClass(). It would still give me TestClass, not InheritingClass.
I was hoping for something more straightforward like this::class.companionClass.
Getting the class of the companion object of a given class will look like this:
TestClass::class.companionObject
Here's an example:
class TestClass {
companion object {
fun sayHello() = "Hello world"
}
}
If you want to get the class that contains the companion, since the latter is always an inner class of the former,
class TestClass {
companion object {
fun whichIsMyParentClass() = this::class.java.declaringClass // It'll return TestClass
}
}
And to further simplify, you'll also want to create an extension property:
import kotlin.reflect.KClass
val <T : Any> KClass<T>.companionClass get() =
if (isCompanion)
this.java.declaringClass
else
null
So, whenever you want to get the parent class of the companion object,
class TestClass {
companion object {
fun whichIsMyParentClass() = this::class.companionClass // It'll return TestClass
}
}
The companion class itself has no reference to the actual class as you can see in this bytecode
public final class TestClass$Companion {
private TestClass$Companion() { // <init> //()V
<localVar:index=0 , name=this , desc=LTestClass$Companion;, sig=null, start=L1, end=L2>
L1 {
aload0 // reference to self
invokespecial java/lang/Object <init>(()V);
return
}
L2 {
}
}
public TestClass$Companion(kotlin.jvm.internal.DefaultConstructorMarker arg0) { // <init> //(Lkotlin/jvm/internal/DefaultConstructorMarker;)V
<localVar:index=0 , name=this , desc=LTestClass$Companion;, sig=null, start=L1, end=L2>
<localVar:index=1 , name=$constructor_marker , desc=Lkotlin/jvm/internal/DefaultConstructorMarker;, sig=null, start=L1, end=L2>
L1 {
aload0 // reference to self
invokespecial TestClass$Companion <init>(()V);
return
}
L2 {
}
}
}
The reference is only the other way around (see decompiled kotlin class)
public final class TestClass {
public static final Companion companion = ...
}
So you can either do it as you just did by cutting off the .Companion part of the class name or you reference it by hard with TestClass::class.java (what is in my opinion no problem and the best solution)
If you need to print the class name, you can add simpleName, such as
this::class.java.declaringClass.simpleName

Kotlin static methods and variables

I want to be able to save a class instance to a public static variable but I can't figure out how to do this in Kotlin.
class Foo {
public static Foo instance;
public Foo() {
instance = this;
}
}
Update: since this answer is getting a decent amount of upvotes, I really wanted to say that you shouldn't do the below, but instead just use object Foo { ... }, like Roman rightly points out in the comment.
Previous answer:
The closest thing to Java's static fields is a companion object. You can find the documentation reference for them here: https://kotlinlang.org/docs/reference/object-declarations.html#companion-objects
Your code in Kotlin would look something like this:
class Foo {
companion object {
lateinit var instance: Foo
}
init {
instance = this
}
}
If you want your fields/methods to be exposed as static to Java callers, you can apply the #JvmStatic annotation:
class Foo {
companion object {
#JvmStatic lateinit var instance: Foo
}
init {
instance = this
}
}
It looks that you want to define a singleton object. It is supported in Kotlin as a first-class concept:
object Foo {
...
}
All the boilerplate code with static field and constructor is taken care by the Kotlin automatically. You don't have to write any of that.
From the Kotlin code you can refer to the instance of this object simply as Foo. From the Java code you can referer to the instance of this object as Foo.INSTANCE, because the Kotlin compiler automatically creates the corresponding static field named INSTANCE.
first you create a simple class then after create a block followed by companion object keyword
for example:
class Test{
companion object{
fun getValue(): String{
return "Test String"
}
}
}
you can call this class function using class name dot function name
for example:
// here you will get the function value
Test.getValue()
You can create a companion object for the class, and if you want the field to be static you can use the annotation #JvmStatic. Companion object have access to private members of the class it is companion for.
See below an example:
class User {
private lateinit var name: String
override fun toString() = name
companion object {
#JvmStatic
val instance by lazy {
User().apply { name = "jtonic" }
}
}
}
class CompanionTest {
#Test
fun `test companion object`() {
User.instance.toString() shouldBe "jtonic"
}
}